-
2
-
-
84876534192
-
The time-fractional coupled-Korteweg-de-Vries equations
-
Article ID 947986 2013. doi:10.1155/2013/947986
-
Atangana, A, Secer, A: The time-fractional coupled-Korteweg-de-Vries equations. Abstr. Appl. Anal. 2013, Article ID 947986 (2013). doi:10.1155/2013/947986
-
(2013)
Abstr. Appl. Anal.
-
-
Atangana, A.1
Secer, A.2
-
3
-
-
0026124343
-
Fractional order state equations for the control of visco-elastically damped structures
-
Bagley, R, Calico, R: Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control Dyn. 14, 304-311 (1991)
-
(1991)
J. Guid. Control Dyn.
, vol.14
, pp. 304-311
-
-
Bagley, R.1
Calico, R.2
-
4
-
-
0021424253
-
Linear approximation for transfer functions with a pole of fractional order
-
Sun, H, Abdelwahed, A, Onaral, B: Linear approximation for transfer functions with a pole of fractional order. IEEE Trans. Autom. Control 29, 441-444 (1984)
-
(1984)
IEEE Trans. Autom. Control
, vol.29
, pp. 441-444
-
-
Sun, H.1
Abdelwahed, A.2
Onaral, B.3
-
5
-
-
0010178279
-
An analog simulation of non-integer order transfer functions for analysis of electrode process
-
Ichise, M, Nagayanagi, Y, Kojima, T: An analog simulation of non-integer order transfer functions for analysis of electrode process. J. Electroanal. Chem. Interfacial Electrochem. 33, 253-265 (1971)
-
(1971)
J. Electroanal. Chem. Interfacial Electrochem.
, vol.33
, pp. 253-265
-
-
Ichise, M.1
Nagayanagi, Y.2
Kojima, T.3
-
7
-
-
0034517069
-
Fractional market dynamics
-
Laskin, N: Fractional market dynamics. Physica A 287, 482-492 (2000)
-
(2000)
Physica A
, vol.287
, pp. 482-492
-
-
Laskin, N.1
-
8
-
-
0000378977
-
Quantum Lévy processes and fractional kinetics
-
Kunsezov, D, Bulagc, A, Dang, G: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 2, 1136-1139 (1999)
-
(1999)
Phys. Rev. Lett.
, vol.2
, pp. 1136-1139
-
-
Kunsezov, D.1
Bulagc, A.2
Dang, G.3
-
9
-
-
0034271488
-
Fractional quantum mechanics
-
Laskin, N: Fractional quantum mechanics. Phys. Rev. E 62, 3135-3145 (2000)
-
(2000)
Phys. Rev. E
, vol.62
, pp. 3135-3145
-
-
Laskin, N.1
-
10
-
-
0000415309
-
Fractional quantum mechanics and Lévy path integrals
-
Laskin, N: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 298, 298-305 (2000)
-
(2000)
Phys. Lett. A
, vol.298
, pp. 298-305
-
-
Laskin, N.1
-
11
-
-
0034363921
-
Fractals and quantum mechanics
-
Laskin, N: Fractals and quantum mechanics. Chaos 10, 780-790 (2000)
-
(2000)
Chaos
, vol.10
, pp. 780-790
-
-
Laskin, N.1
-
12
-
-
41349084761
-
Fractional Schrödinger equation
-
Laskin, N: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
-
(2002)
Phys. Rev. E
, vol.66
, pp. 056108
-
-
Laskin, N.1
-
13
-
-
33748296360
-
Some physical applications of fractional Schrödinger equation
-
Guo, X, Xu, M: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 82104 (2006)
-
(2006)
J. Math. Phys.
, vol.47
, pp. 82104
-
-
Guo, X.1
Xu, M.2
-
14
-
-
34547601480
-
Solutions to the space fractional Schrödinger equation using momentum representation method
-
Dong, J, Xu, M: Solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48, 072105 (2007)
-
(2007)
J. Math. Phys.
, vol.48
, pp. 072105
-
-
Dong, J.1
Xu, M.2
-
15
-
-
34247620479
-
Generalized fractional Schrödinger equation with space-time fractional derivatives
-
Wang, S, Xu, M: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48, 043502 (2007)
-
(2007)
J. Math. Phys.
, vol.48
, pp. 043502
-
-
Wang, S.1
Xu, M.2
-
16
-
-
43449090362
-
Space-time fractional Schrödinger equation with time-independent potentials
-
Dong, J, Xu, M: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344, 1005-1017 (2008)
-
(2008)
J. Math. Anal. Appl.
, vol.344
, pp. 1005-1017
-
-
Dong, J.1
Xu, M.2
-
17
-
-
4544250038
-
Time fractional Schrödinger equation
-
Naker, M: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339-3352 (2004)
-
(2004)
J. Math. Phys.
, vol.45
, Issue.8
, pp. 3339-3352
-
-
Naker, M.1
-
18
-
-
74349105778
-
Variable order differential equations and diffusion with changing modes
-
Umarov, S, Steinberg, S: Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend. 28, 431-450 (2009)
-
(2009)
Z. Anal. Anwend.
, vol.28
, pp. 431-450
-
-
Umarov, S.1
Steinberg, S.2
-
19
-
-
68649098514
-
Variable order fractional differential operators in anomalous diffusion modeling
-
Sun, HG, Chen, W, Chen, YQ: Variable order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586-4592 (2009)
-
(2009)
Physica A
, vol.388
, pp. 4586-4592
-
-
Sun, H.G.1
Chen, W.2
Chen, Y.Q.3
-
20
-
-
84948882036
-
Integration and differentiation to a variable fractional order
-
Samko, SG, Ross, B: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277-300 (1993)
-
(1993)
Integral Transforms Spec. Funct.
, vol.1
, pp. 277-300
-
-
Samko, S.G.1
Ross, B.2
-
21
-
-
52349084738
-
Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
-
Pedro, H T C, Kobayashi, MH, Pereira, J M C, Coimbra, C F M: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659-1672 (2008)
-
(2008)
J. Vib. Control
, vol.14
, pp. 1659-1672
-
-
Pedro, H.T.C.1
Kobayashi, M.H.2
Pereira, J.M.C.3
Coimbra, C.F.M.4
-
22
-
-
0001691616
-
Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow
-
Solomon, TH, Weeks, ER, Swinney, HL: Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975-3978 (1993)
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 3975-3978
-
-
Solomon, T.H.1
Weeks, E.R.2
Swinney, H.L.3
-
23
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang, P, Liu, F, Anh, V, Turner, I: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009)
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
24
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin, R, Liu, F, Anh, V, Turner, I: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435-445 (2009)
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
25
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
Yuste, SB, Acedo, L: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862-1874 (2005)
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
26
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin, Y, Xu, C: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007)
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
27
-
-
84877282814
-
Generalized groundwater flow equation using the concept of variable order derivative
-
doi:10.1186/1687-2770-2013-53
-
Atangana, A, Botha, JF: Generalized groundwater flow equation using the concept of variable order derivative. Bound. Value Probl. 2013, 53 (2013). doi:10.1186/1687-2770-2013-53
-
(2013)
Bound. Value Probl.
, vol.53
, pp. 2013
-
-
Atangana, A.1
Botha, J.F.2
-
28
-
-
84877309146
-
A possible generalization of acoustic wave equation using the concept of perturbed derivative order
-
Article ID 696597 2013. doi:10.1155/2013/696597
-
Atangana, A, Kiliçman, A: A possible generalization of acoustic wave equation using the concept of perturbed derivative order. Math. Probl. Eng. 2013, Article ID 696597 (2013). doi:10.1155/2013/696597
-
(2013)
Math. Probl. Eng.
-
-
Atangana, A.1
Kiliçman, A.2
|