-
1
-
-
0000208310
-
Branching dendritic trees and motoneuron membrane resistivity
-
W. Rall Branching dendritic trees and motoneuron membrane resistivity Exp. Neurol. 1 1959 491 527
-
(1959)
Exp. Neurol.
, vol.1
, pp. 491-527
-
-
Rall, W.1
-
2
-
-
41349096645
-
Fractional diffusion modelling of ion channel gating
-
I. Goychuk, and P. Hggi Fractional diffusion modelling of ion channel gating Phys. Rev. E 70 2004 051915
-
(2004)
Phys. Rev. e
, vol.70
, pp. 051915
-
-
Goychuk, I.1
Hggi, P.2
-
3
-
-
41549083671
-
Fractional cable models for spiny neuronal densites
-
B. Henry, T. Langlands, and S. Wearne Fractional cable models for spiny neuronal densites Phys. Rev. Lett. 100 2008 128103
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 128103
-
-
Henry, B.1
Langlands, T.2
Wearne, S.3
-
6
-
-
70350663279
-
Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions
-
T.A.M. Langlands, B.I. Henry, and S.L. Wearne Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions J. Math. Biol. 59 2009 761 808
-
(2009)
J. Math. Biol.
, vol.59
, pp. 761-808
-
-
Langlands, T.A.M.1
Henry, B.I.2
Wearne, S.L.3
-
7
-
-
77953717639
-
-
Applied Mathematics Report AMR05/35, University of New South Wales
-
T. Langlands, B. Henry, S. Wearne, Solution of a fractional cable equation: finite case, Applied Mathematics Report AMR05/35, University of New South Wales, 2005.
-
(2005)
Solution of a Fractional Cable Equation: Finite Case
-
-
Langlands, T.1
Henry, B.2
Wearne, S.3
-
8
-
-
40549123984
-
Anomalous subdiffusion with multispecies linear reaction dynamics
-
T. Langlands, B. Henry, and S. Wearne Anomalous subdiffusion with multispecies linear reaction dynamics Phys. Rev. E 77 2008 021111
-
(2008)
Phys. Rev. e
, vol.77
, pp. 021111
-
-
Langlands, T.1
Henry, B.2
Wearne, S.3
-
9
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. 339 2000 1 77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
10
-
-
0024367526
-
An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons
-
DOI 10.1007/BF00217656
-
N. Qian, and T. Sejnowski An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites spines and axons Biol. Cybernet. 62 1989 1 15 (Pubitemid 20003987)
-
(1989)
Biological Cybernetics
, vol.62
, Issue.1
, pp. 1-15
-
-
Qian, N.1
Sejnowski, T.J.2
-
11
-
-
0003089278
-
Core conductor theory and cable properties of neurons
-
R. Poeter, American Physiological Society Bethesda, MD (Chapter 3)
-
W. Rall Core conductor theory and cable properties of neurons R. Poeter, Handbook of Physiology: The Nervous System vol. 1 1977 American Physiological Society Bethesda, MD 39 97 (Chapter 3)
-
(1977)
Handbook of Physiology: The Nervous System
, vol.1
, pp. 39-97
-
-
Rall, W.1
-
14
-
-
0028140412
-
Anomalous diffusion due to obstacles: A Monte Carlo study
-
M. Saxton Anomalous diffusion due to obstacles: A Monte Carlo study Biophys. J. 66 1994 394 401 (Pubitemid 24058459)
-
(1994)
Biophysical Journal
, vol.66
, Issue.2
, pp. 394-401
-
-
Saxton, M.J.1
-
15
-
-
0030050141
-
Anomalous diffusion due to binding: A Monte Carlo study
-
M. Saxton Anomalous diffusion due to binding: A Monte Carlo study Biophys. J. 70 1996 1250 1262 (Pubitemid 26073038)
-
(1996)
Biophysical Journal
, vol.70
, Issue.3
, pp. 1250-1262
-
-
Saxton, M.J.1
-
16
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
R. Lin, F. Liu, V. Anh, and I. Turner Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation Appl. Math. Comput. 212 2009 435 445
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
17
-
-
84907893973
-
Numerical methods for the variable-order fractional advectiondiffusion equation with a nonlinear source term
-
P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advectiondiffusion equation with a nonlinear source term SIAM J. Numer. Anal. 47 2009 1760 1781
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
0346897985
-
Mechanics with variable-order differential operators
-
C.F.M. Coimbra Mechanics with variable-order differential operators Ann. Phys. 12 2003 692 703
-
(2003)
Ann. Phys.
, vol.12
, pp. 692-703
-
-
Coimbra, C.F.M.1
-
19
-
-
67349146657
-
Feller semigroups obtained by variable order subordination
-
K.P. Evans, and N. Jacob Feller semigroups obtained by variable order subordination Rev. Mat. Complut. 20 2 2007 293 307
-
(2007)
Rev. Mat. Complut.
, vol.20
, Issue.2
, pp. 293-307
-
-
Evans, K.P.1
Jacob, N.2
-
20
-
-
0013118687
-
Pseudo differential operators with variable order of differentiation generating feller semigroup
-
N. Jacob, and H. Leopold Pseudo differential operators with variable order of differentiation generating feller semigroup Integral Equations Operator Theory 17 1993 544 553
-
(1993)
Integral Equations Operator Theory
, vol.17
, pp. 544-553
-
-
Jacob, N.1
Leopold, H.2
-
21
-
-
0013161462
-
On Markov process generated by pseudodifferential operator of variable order
-
K. Kikuchi, and A. Negoro On Markov processes generated by pseudodifferentail operator of variable order Osaka J. Math. 34 1997 319 335 (Pubitemid 127374957)
-
(1997)
Osaka Journal of Mathematics
, vol.34
, Issue.2
, pp. 319-335
-
-
Kikuchi, K.1
Negoro, A.2
-
22
-
-
0034355283
-
Embedding of function spaces of variable order of differentiation
-
H.G. Leopold Embedding of function spaces of variable order of differentiation Czechoslovak Math. J. 49 1999 633 644
-
(1999)
Czechoslovak Math. J.
, vol.49
, pp. 633-644
-
-
Leopold, H.G.1
-
24
-
-
0036650957
-
Variable order and distributed order fractional operators
-
DOI 10.1023/A:1016586905654, Fractional Order Calculus and Its Applications
-
C.F. Lorenzo, and T.T. Hartley Variable-order and distributed order fractional operators Nonlinear Dyn. 29 2002 57 98 (Pubitemid 34945393)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
25
-
-
34547624283
-
A variable order constitutive relation for viscoelasticity
-
DOI 10.1002/andp.200710246
-
L.E.S. Ramirez, and C.F.M. Coimbra Variable order constitutive relation for viscoelas-ticity Ann. Phys. 16 2007 543 552 (Pubitemid 47203902)
-
(2007)
Annalen der Physik (Leipzig)
, vol.16
, Issue.7-8
, pp. 543-552
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
26
-
-
84862843990
-
On the selection and meaning of variable order operators for dynamic modeling
-
Article ID 846107, 16 pages
-
L.E.S. Ramirez, and C.F.M. Coimbra On the selection and meaning of variable order operators for dynamic modeling Int. J. Differ. 2010 2010 Article ID 846107, 16 pages
-
(2010)
Int. J. Differ.
, vol.2010
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
28
-
-
84948882036
-
Integration and differentiation to a variable fractional order
-
S.G. Samko, and B. Ross Integration and differentiation to a variable fractional order Integral Transforms Spec. Funct. 1 1993 277 300
-
(1993)
Integral Transforms Spec. Funct.
, vol.1
, pp. 277-300
-
-
Samko, S.G.1
Ross, B.2
-
30
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chang-Ming Chen, F. Liu, V. Anh, and I. Turner Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation SIAM J. Sci. Comput. 32 4 2010 1740 1760
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, Issue.4
, pp. 1740-1760
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
31
-
-
79551635060
-
Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
-
Chang-Ming Chen, F. Liu, V. Anh, and I. Turner Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term Appl. Math. Comput. 217 2011 5729 5742
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 5729-5742
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, I.4
|