-
1
-
-
34250643564
-
Homotopy perturbation method for fractional kdv equation
-
Wang, Q: Homotopy perturbation method for fractional KdV equation. Appl. Math. Comput. 190, 1795 (2007)
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 1795
-
-
Wang, Q.1
-
2
-
-
78049333706
-
On nonlinear fractional klein-gordon equation
-
Golmakhaneh, AK, Golmakhaneh, AK, Baleanu, D: On nonlinear fractional Klein-Gordon equation. Signal Process. 91, 446 (2011)
-
(2011)
Signal Process.
, vol.91
, Issue.446
-
-
Golmakhaneh, A.K.1
Golmakhaneh, A.K.2
Baleanu, D.3
-
3
-
-
34848822538
-
Analytical solution for the time fractional telegraph equation by the method of separating variables
-
Chen, J, Liu, F, Anh, V: Analytical solution for the time fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364 (2008)
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364
-
-
Chen, J.1
Liu, F.2
Anh, V.3
-
4
-
-
38049162125
-
Variational iteration method for solving the space-and time-fractional kdv equation
-
Momani, S, Odibat, Z, Alawneh, A: Variational iteration method for solving the space-and time-fractional KdV equation. Numer. Methods Partial Differ. Equ. 24(1), 262 (2008)
-
(2008)
Numer. Methods Partial Differ. Equ.
, vol.24
, Issue.1
, pp. 262
-
-
Momani, S.1
Odibat, Z.2
Alawneh, A.3
-
5
-
-
24144494623
-
An explicit and numerical solutions of the fractional kdv equation
-
Momani, S: An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, 110 (2005)
-
(2005)
Math. Comput. Simul.
, vol.70
, pp. 110
-
-
Momani, S.1
-
6
-
-
37549023840
-
On numerical solution of burgers' equation by homotopy analysis method
-
Inc, M: On numerical solution of Burgers' equation by homotopy analysis method. Phys. Lett. A 372, 356 (2008)
-
(2008)
Phys. Lett. A
, vol.372
, pp. 356
-
-
Inc, M.1
-
7
-
-
84900298088
-
Solution of a fractional cable equation: Finite case
-
Langlands, TAM, Henry, B, Wearne, S: Solution of a fractional cable equation: Finite case. Preprint, Submitted to Elsevier Science http://www.maths.unsw.edu.au/applied/filed/2005/amr05-33.pdf (2005)
-
(2005)
Preprint, Submitted to Elsevier Science
-
-
Langlands, T.A.M.1
Henry, B.2
Wearne, S.3
-
9
-
-
77953719945
-
Stability and convergence of two new implicit numerical methods for fractional cable equation
-
IDETC/CIE, San Diego, California, USA
-
Liu, F, Yang, Q, Turner, I: Stability and convergence of two new implicit numerical methods for fractional cable equation. In: Proceeding of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA (2009)
-
(2009)
Proceeding of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
-
-
Liu, F.1
Yang, Q.2
Turner, I.3
-
10
-
-
84861338331
-
Implicit compact difference scheme for the fractional cable equation
-
Hu, X, Zhang, L: Implicit compact difference scheme for the fractional cable equation. Appl. Math. Model. 36(9), 4027 (2012)
-
(2012)
Appl. Math. Model.
, vol.36
, Issue.9
, pp. 4027
-
-
Hu, X.1
Zhang, L.2
-
11
-
-
84878576090
-
An explicit numerical method for the fractional cable equation
-
doi:10.1155/2011/231920
-
Quintana-Murillo, J, Yuste, SB: An explicit numerical method for the fractional cable equation. Int. J. Differ. Equ. (2011). doi:10.1155/2011/231920
-
(2011)
Int. J. Differ. Equ.
-
-
Quintana-Murillo, J.1
Yuste, S.B.2
-
13
-
-
34247352920
-
On exact solution of laplace equation with dirichlet and neumann boundary conditions by the homotopy analysis method
-
Inc, M: On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method. Phys. Lett. A 365, 412 (2007)
-
(2007)
Phys. Lett. A
, vol.365
, pp. 412
-
-
Inc, M.1
-
14
-
-
50249115553
-
Soliton solutions for the fitzhugh-nagumo equation with the homotopy analysis method
-
Abbasbandy, S: Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706 (2008)
-
(2008)
Appl. Math. Model.
, vol.32
, pp. 2706
-
-
Abbasbandy, S.1
-
15
-
-
73049118062
-
Series solution of the system of integro-differential equations
-
Abbasbandy, S, Shivanian, E: Series solution of the system of integro-differential equations. Z. Naturforsch. A 64, 811 (2009)
-
(2009)
Z. Naturforsch. A
, vol.64
, pp. 811
-
-
Abbasbandy, S.1
Shivanian, E.2
-
16
-
-
60649083395
-
The homotopy analysis method for approximating the solution of the modified korteweg-de vries equation
-
Yinping, L, Zhibin, L: The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation. Chaos Solitons Fractals 39, 1 (2009)
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 1
-
-
Yinping, L.1
Zhibin, L.2
-
17
-
-
84855785200
-
Homotopy analysis method for solving a couple of evolution equations and comparison with adomian decomposition method
-
Jafari, H, Tajadodi, H, Biswas, A: Homotopy analysis method for solving a couple of evolution equations and comparison with Adomian decomposition method. Waves Random Complex Media 21(4), 657-667 (2011)
-
(2011)
Waves Random Complex Media
, vol.21
, Issue.4
, pp. 657-667
-
-
Jafari, H.1
Tajadodi, H.2
Biswas, A.3
-
18
-
-
77956684069
-
-
North-Holland Mathematics Studies
-
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204 (2006)
-
(2006)
Theory and Applications of Fractional Differential Equations
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
|