메뉴 건너뛰기




Volumn 217, Issue 12, 2011, Pages 5729-5742

Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term

Author keywords

Convergence; Numerical scheme improving temporal accuracy; Stability; The variable order Galilei invariant advection diffusion equation with a nonlinear source term; The variable order Riemann Liouville fractional partial derivative

Indexed keywords

ADVECTION DIFFUSION EQUATION; CONVERGENCE; FIRST ORDER; NONLINEAR SOURCE TERM; NUMERICAL EXAMPLE; NUMERICAL SCHEME; NUMERICAL SCHEME IMPROVING TEMPORAL ACCURACY; NUMERICAL SIMULATION; SECOND ORDERS; SPATIAL ACCURACY; STABILITY AND CONVERGENCE; THE VARIABLE-ORDER GALILEI INVARIANT ADVECTION DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM; THE VARIABLE-ORDER RIEMANN-LIOUVILLE FRACTIONAL PARTIAL DERIVATIVE;

EID: 79551635060     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2010.12.049     Document Type: Article
Times cited : (38)

References (33)
  • 1
    • 41449095257 scopus 로고    scopus 로고
    • Numerical solutions for fractional reaction-diffusion equations
    • B. Baeumer, M. Kovcs, and M. Meerschaert Numerical solutions for fractional reaction-diffusion equations Comput. Math. Appl. 55 2008 2212 2226
    • (2008) Comput. Math. Appl. , vol.55 , pp. 2212-2226
    • Baeumer, B.1    Kovcs, M.2    Meerschaert, M.3
  • 2
    • 84914701719 scopus 로고    scopus 로고
    • Implicit difference approximation of the Galilei invariant fractional advection diffusion equation
    • Chang-Ming Chen, F. Liu, I. Turner, and V. Anh Implicit difference approximation of the Galilei invariant fractional advection diffusion equation ANZIAM J. 48 C775-C789 2007 CTAC2006
    • (2007) ANZIAM J. , vol.48
    • Chen, C.-M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 3
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • C.-M. Chen, F. Liu, V. Anh, and I. Turner Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation SIAM J. Sci. Comput. 32 4 2010 1740 1760
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1740-1760
    • Chen, C.-M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 4
    • 0346897985 scopus 로고    scopus 로고
    • Mechanics with variable-order differential operators
    • C.F.M. Coimbra Mechanics with variable-order differential operators Ann. Phys. 12 2003 692 703
    • (2003) Ann. Phys. , vol.12 , pp. 692-703
    • Coimbra, C.F.M.1
  • 5
    • 67349146657 scopus 로고    scopus 로고
    • Feller semigroups obtained by variable order subordination
    • K.P. Evans, and N. Jacob Feller semigroups obtained by variable order subordination Rev. Mat. Comput. 20 2 2007 293 307
    • (2007) Rev. Mat. Comput. , vol.20 , Issue.2 , pp. 293-307
    • Evans, K.P.1    Jacob, N.2
  • 6
    • 0036828301 scopus 로고    scopus 로고
    • Discrete random walk models for space-time fractional diffusion
    • R. Gorenflo Discrete random walk models for space-time fractional diffusion Chem.Phys. 284 2002 521 541
    • (2002) Chem.Phys. , vol.284 , pp. 521-541
    • Gorenflo, R.1
  • 7
    • 0036650850 scopus 로고    scopus 로고
    • Time fractional diffusion: A discrete random walk approach
    • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi Time fractional diffusion: a discrete random walk approach Nonlinear Dyn. 29 2002 129 143
    • (2002) Nonlinear Dyn. , vol.29 , pp. 129-143
    • Gorenflo, R.1    Mainardi, F.2    Moretti, D.3    Paradisi, P.4
  • 8
    • 44049116564 scopus 로고
    • Fractional diffusion equation for transport phenomena in random media
    • M. Giona, and H.E. Roman Fractional diffusion equation for transport phenomena in random media Physica A 185 1992 87 97
    • (1992) Physica A , vol.185 , pp. 87-97
    • Giona, M.1    Roman, H.E.2
  • 9
    • 0343526808 scopus 로고    scopus 로고
    • Fractional reaction-diffusion
    • B.I. Henry, and S.L. Wearne Fractional reaction-diffusion Physica A 276 2000 448 455
    • (2000) Physica A , vol.276 , pp. 448-455
    • Henry, B.I.1    Wearne, S.L.2
  • 10
    • 0013118687 scopus 로고
    • Pseudo differential operators with variable order of differentiation generating Feller semigroup
    • N. Jacob, and H. Leopold Pseudo differential operators with variable order of differentiation generating Feller semigroup Integr. Equat. Oper. Th. 17 1993 544 553
    • (1993) Integr. Equat. Oper. Th. , vol.17 , pp. 544-553
    • Jacob, N.1    Leopold, H.2
  • 11
    • 0013161462 scopus 로고    scopus 로고
    • On Markov processes generated by pseudodifferential operator of variable order
    • K. Kikuchi, and A. Negoro On Markov processes generated by pseudodifferential operator of variable order Osaka J. Math. 34 1997 319 335
    • (1997) Osaka J. Math. , vol.34 , pp. 319-335
    • Kikuchi, K.1    Negoro, A.2
  • 12
    • 48549089806 scopus 로고    scopus 로고
    • Subdiffusion in a system with a thick membrane
    • T. Kosztolowicz Subdiffusion in a system with a thick membrane J. Membrane Sci. 320 2008 492 499
    • (2008) J. Membrane Sci. , vol.320 , pp. 492-499
    • Kosztolowicz, T.1
  • 13
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T.A.M. Langlands, and B.I. Henry The accuracy and stability of an implicit solution method for the fractional diffusion equation J. Comput. Phys. 205 2005 719 736
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 14
    • 0034355283 scopus 로고    scopus 로고
    • Embedding of function spaces of variable order of differentiation
    • H.G. Leopold Embedding of function spaces of variable order of differentiation Czech. Math. J. 49 1999 633C644
    • (1999) Czech. Math. J. , vol.49
    • Leopold, H.G.1
  • 15
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
    • R. Lin, F. Liu, V. Anh, and I. Turner Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation Appl. Math. Comput. 212 2009 435 445
    • (2009) Appl. Math. Comput. , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 16
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 18
    • 0036650957 scopus 로고    scopus 로고
    • Variable-order and distributed order fractional operators
    • C.F. Lorenzo, and T.T. Hartley Variable-order and distributed order fractional operators Nonlinear Dyn. 29 2002 57 98
    • (2002) Nonlinear Dyn. , vol.29 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 19
    • 0001536558 scopus 로고    scopus 로고
    • Anomalous transport in external fields: Continuous time random walksand fractional diffusion equations extended
    • R. Metzler, J. Klafter, and I.M. Sokolov Anomalous transport in external fields: continuous time random walksand fractional diffusion equations extended Phys. Rev. E 58 1998 1621 1633
    • (1998) Phys. Rev. e , vol.58 , pp. 1621-1633
    • Metzler, R.1    Klafter, J.2    Sokolov, I.M.3
  • 20
    • 18144408075 scopus 로고    scopus 로고
    • Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
    • R. Metzler, E. Barkai, and J. Klafter Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach Phys. Rev. Lett. 82 1999 3563 3567
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 3563-3567
    • Metzler, R.1    Barkai, E.2    Klafter, J.3
  • 21
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 2000 1 77
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 22
    • 0033884660 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion equations
    • R. Metzler, and J. Klafter Boundary value problems for fractional diffusion equations Phys. A 278 2000 107 125
    • (2000) Phys. A , vol.278 , pp. 107-125
    • Metzler, R.1    Klafter, J.2
  • 24
    • 34547624283 scopus 로고    scopus 로고
    • Variable order constitutive relation for viscoelasticity
    • L.E.S. Ramirez, and C.F.M. Coimbra variable order constitutive relation for viscoelasticity Ann. Phys. 16 2007 543 552
    • (2007) Ann. Phys. , vol.16 , pp. 543-552
    • Ramirez, L.E.S.1    Coimbra, C.F.M.2
  • 25
    • 84862843990 scopus 로고    scopus 로고
    • On the selection and meaning of variable order operators for dynamic modeling
    • L.E.S. Ramirez, and C.F.M. Coimbra On the selection and meaning of variable order operators for dynamic modeling Int. J. Differ. 2010 2010 16 Article ID 846107
    • (2010) Int. J. Differ. , vol.2010 , pp. 16
    • Ramirez, L.E.S.1    Coimbra, C.F.M.2
  • 26
    • 2442585557 scopus 로고    scopus 로고
    • Fractional generalized random fields of variable order
    • M.D. Ruiz-Medina, V.V. Anh, and J.M. Angulo Fractional generalized random fields of variable order Stoch. Anal. Appl. 22 2 2004 775 799
    • (2004) Stoch. Anal. Appl. , vol.22 , Issue.2 , pp. 775-799
    • Ruiz-Medina, M.D.1    Anh, V.V.2    Angulo, J.M.3
  • 27
    • 84948882036 scopus 로고
    • Integration and differentiation to a variable fractional order
    • S.G. Samko, and B. Ross Integration and differentiation to a variable fractional order Integr. Transfer Spec. F. 1 1993 277 300
    • (1993) Integr. Transfer Spec. F. , vol.1 , pp. 277-300
    • Samko, S.G.1    Ross, B.2
  • 29
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • C. Taddjeran, M. Meerschaert, and H. Scheffler A second-order accurate numerical approximation for the fractional diffusion equation J. Comput. Phys. 213 2006 205 213
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Taddjeran, C.1    Meerschaert, M.2    Scheffler, H.3
  • 30
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • S.B. Yuste Weighted average finite difference methods for fractional diffusion equations J. Comput. Phys. 216 2006 264 274
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 31
    • 62349083202 scopus 로고    scopus 로고
    • Particle tracking for time-fractional diffusion
    • Y. Zhang, M. Meerschaert, and B. Baeumer Particle tracking for time-fractional diffusion Phys. Rev. E 78 2008 036705
    • (2008) Phys. Rev. e , vol.78 , pp. 036705
    • Zhang, Y.1    Meerschaert, M.2    Baeumer, B.3
  • 32
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal. 46 2008 1079 1095
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 33
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
    • P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term SIAM J. Numer. Anal. 47 2009 1760 1781
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.