-
1
-
-
41449095257
-
Numerical solutions for fractional reaction-diffusion equations
-
B. Baeumer, M. Kovcs, and M. Meerschaert Numerical solutions for fractional reaction-diffusion equations Comput. Math. Appl. 55 2008 2212 2226
-
(2008)
Comput. Math. Appl.
, vol.55
, pp. 2212-2226
-
-
Baeumer, B.1
Kovcs, M.2
Meerschaert, M.3
-
2
-
-
84914701719
-
Implicit difference approximation of the Galilei invariant fractional advection diffusion equation
-
Chang-Ming Chen, F. Liu, I. Turner, and V. Anh Implicit difference approximation of the Galilei invariant fractional advection diffusion equation ANZIAM J. 48 C775-C789 2007 CTAC2006
-
(2007)
ANZIAM J.
, vol.48
-
-
Chen, C.-M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
3
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
C.-M. Chen, F. Liu, V. Anh, and I. Turner Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation SIAM J. Sci. Comput. 32 4 2010 1740 1760
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, Issue.4
, pp. 1740-1760
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
4
-
-
0346897985
-
Mechanics with variable-order differential operators
-
C.F.M. Coimbra Mechanics with variable-order differential operators Ann. Phys. 12 2003 692 703
-
(2003)
Ann. Phys.
, vol.12
, pp. 692-703
-
-
Coimbra, C.F.M.1
-
5
-
-
67349146657
-
Feller semigroups obtained by variable order subordination
-
K.P. Evans, and N. Jacob Feller semigroups obtained by variable order subordination Rev. Mat. Comput. 20 2 2007 293 307
-
(2007)
Rev. Mat. Comput.
, vol.20
, Issue.2
, pp. 293-307
-
-
Evans, K.P.1
Jacob, N.2
-
6
-
-
0036828301
-
Discrete random walk models for space-time fractional diffusion
-
R. Gorenflo Discrete random walk models for space-time fractional diffusion Chem.Phys. 284 2002 521 541
-
(2002)
Chem.Phys.
, vol.284
, pp. 521-541
-
-
Gorenflo, R.1
-
8
-
-
44049116564
-
Fractional diffusion equation for transport phenomena in random media
-
M. Giona, and H.E. Roman Fractional diffusion equation for transport phenomena in random media Physica A 185 1992 87 97
-
(1992)
Physica A
, vol.185
, pp. 87-97
-
-
Giona, M.1
Roman, H.E.2
-
9
-
-
0343526808
-
Fractional reaction-diffusion
-
B.I. Henry, and S.L. Wearne Fractional reaction-diffusion Physica A 276 2000 448 455
-
(2000)
Physica A
, vol.276
, pp. 448-455
-
-
Henry, B.I.1
Wearne, S.L.2
-
10
-
-
0013118687
-
Pseudo differential operators with variable order of differentiation generating Feller semigroup
-
N. Jacob, and H. Leopold Pseudo differential operators with variable order of differentiation generating Feller semigroup Integr. Equat. Oper. Th. 17 1993 544 553
-
(1993)
Integr. Equat. Oper. Th.
, vol.17
, pp. 544-553
-
-
Jacob, N.1
Leopold, H.2
-
11
-
-
0013161462
-
On Markov processes generated by pseudodifferential operator of variable order
-
K. Kikuchi, and A. Negoro On Markov processes generated by pseudodifferential operator of variable order Osaka J. Math. 34 1997 319 335
-
(1997)
Osaka J. Math.
, vol.34
, pp. 319-335
-
-
Kikuchi, K.1
Negoro, A.2
-
12
-
-
48549089806
-
Subdiffusion in a system with a thick membrane
-
T. Kosztolowicz Subdiffusion in a system with a thick membrane J. Membrane Sci. 320 2008 492 499
-
(2008)
J. Membrane Sci.
, vol.320
, pp. 492-499
-
-
Kosztolowicz, T.1
-
13
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
T.A.M. Langlands, and B.I. Henry The accuracy and stability of an implicit solution method for the fractional diffusion equation J. Comput. Phys. 205 2005 719 736
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
14
-
-
0034355283
-
Embedding of function spaces of variable order of differentiation
-
H.G. Leopold Embedding of function spaces of variable order of differentiation Czech. Math. J. 49 1999 633C644
-
(1999)
Czech. Math. J.
, vol.49
-
-
Leopold, H.G.1
-
15
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
R. Lin, F. Liu, V. Anh, and I. Turner Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation Appl. Math. Comput. 212 2009 435 445
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
18
-
-
0036650957
-
Variable-order and distributed order fractional operators
-
C.F. Lorenzo, and T.T. Hartley Variable-order and distributed order fractional operators Nonlinear Dyn. 29 2002 57 98
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
19
-
-
0001536558
-
Anomalous transport in external fields: Continuous time random walksand fractional diffusion equations extended
-
R. Metzler, J. Klafter, and I.M. Sokolov Anomalous transport in external fields: continuous time random walksand fractional diffusion equations extended Phys. Rev. E 58 1998 1621 1633
-
(1998)
Phys. Rev. e
, vol.58
, pp. 1621-1633
-
-
Metzler, R.1
Klafter, J.2
Sokolov, I.M.3
-
20
-
-
18144408075
-
Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
-
R. Metzler, E. Barkai, and J. Klafter Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach Phys. Rev. Lett. 82 1999 3563 3567
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3563-3567
-
-
Metzler, R.1
Barkai, E.2
Klafter, J.3
-
21
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 2000 1 77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
22
-
-
0033884660
-
Boundary value problems for fractional diffusion equations
-
R. Metzler, and J. Klafter Boundary value problems for fractional diffusion equations Phys. A 278 2000 107 125
-
(2000)
Phys. A
, vol.278
, pp. 107-125
-
-
Metzler, R.1
Klafter, J.2
-
24
-
-
34547624283
-
Variable order constitutive relation for viscoelasticity
-
L.E.S. Ramirez, and C.F.M. Coimbra variable order constitutive relation for viscoelasticity Ann. Phys. 16 2007 543 552
-
(2007)
Ann. Phys.
, vol.16
, pp. 543-552
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
25
-
-
84862843990
-
On the selection and meaning of variable order operators for dynamic modeling
-
L.E.S. Ramirez, and C.F.M. Coimbra On the selection and meaning of variable order operators for dynamic modeling Int. J. Differ. 2010 2010 16 Article ID 846107
-
(2010)
Int. J. Differ.
, vol.2010
, pp. 16
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
26
-
-
2442585557
-
Fractional generalized random fields of variable order
-
M.D. Ruiz-Medina, V.V. Anh, and J.M. Angulo Fractional generalized random fields of variable order Stoch. Anal. Appl. 22 2 2004 775 799
-
(2004)
Stoch. Anal. Appl.
, vol.22
, Issue.2
, pp. 775-799
-
-
Ruiz-Medina, M.D.1
Anh, V.V.2
Angulo, J.M.3
-
27
-
-
84948882036
-
Integration and differentiation to a variable fractional order
-
S.G. Samko, and B. Ross Integration and differentiation to a variable fractional order Integr. Transfer Spec. F. 1 1993 277 300
-
(1993)
Integr. Transfer Spec. F.
, vol.1
, pp. 277-300
-
-
Samko, S.G.1
Ross, B.2
-
29
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
C. Taddjeran, M. Meerschaert, and H. Scheffler A second-order accurate numerical approximation for the fractional diffusion equation J. Comput. Phys. 213 2006 205 213
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Taddjeran, C.1
Meerschaert, M.2
Scheffler, H.3
-
30
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
S.B. Yuste Weighted average finite difference methods for fractional diffusion equations J. Comput. Phys. 216 2006 264 274
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
31
-
-
62349083202
-
Particle tracking for time-fractional diffusion
-
Y. Zhang, M. Meerschaert, and B. Baeumer Particle tracking for time-fractional diffusion Phys. Rev. E 78 2008 036705
-
(2008)
Phys. Rev. e
, vol.78
, pp. 036705
-
-
Zhang, Y.1
Meerschaert, M.2
Baeumer, B.3
-
32
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal. 46 2008 1079 1095
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
33
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term SIAM J. Numer. Anal. 47 2009 1760 1781
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|