메뉴 건너뛰기




Volumn 212, Issue 2, 2009, Pages 435-445

Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation

Author keywords

Convergence; Explicit difference approximation; Fractional calculus; Nonlinear fractional diffusion equation; Stability; Variable order

Indexed keywords

CONVERGENCE; EXPLICIT DIFFERENCE APPROXIMATION; FRACTIONAL CALCULUS; NONLINEAR FRACTIONAL DIFFUSION EQUATION; VARIABLE ORDER;

EID: 67349098149     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2009.02.047     Document Type: Article
Times cited : (279)

References (29)
  • 2
    • 36149001420 scopus 로고    scopus 로고
    • Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C.-M., Liu F., Turner I., and Anh V. Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227 (2007) 886-897
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.-M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 3
    • 0000424267 scopus 로고    scopus 로고
    • Model of magnetorheological elastomers
    • Davis L.C. Model of magnetorheological elastomers. J. Appl. Phys. 85 6 (1999) 3342-3351
    • (1999) J. Appl. Phys. , vol.85 , Issue.6 , pp. 3342-3351
    • Davis, L.C.1
  • 4
    • 0043210605 scopus 로고    scopus 로고
    • Front dynamics in reaction-diffusion systems with levy flghts: a fractional diffusion approach
    • del Castillo-Negrete D., Carreras B.A., and Lynch V.E. Front dynamics in reaction-diffusion systems with levy flghts: a fractional diffusion approach. Phys. Rev. Lett. 91 1 (2003) 018302
    • (2003) Phys. Rev. Lett. , vol.91 , Issue.1 , pp. 018302
    • del Castillo-Negrete, D.1    Carreras, B.A.2    Lynch, V.E.3
  • 5
    • 67349146657 scopus 로고    scopus 로고
    • Feller semigroups obtained by variable order subordination
    • Evans K.P., and Jacob N. Feller semigroups obtained by variable order subordination. Rev. Mat. Complut. 20 2 (2007) 293-307
    • (2007) Rev. Mat. Complut. , vol.20 , Issue.2 , pp. 293-307
    • Evans, K.P.1    Jacob, N.2
  • 6
    • 0028878140 scopus 로고
    • A fractional calculus approach to self-similar protein dynamics
    • Glockle W.G., and Nonnenmacher T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68 (1995) 46-53
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 7
    • 0343526808 scopus 로고    scopus 로고
    • Fractional reaction-diffusion
    • Henry B.I., and Wearne S.L. Fractional reaction-diffusion. Physica A 276 (2000) 448-455
    • (2000) Physica A , vol.276 , pp. 448-455
    • Henry, B.I.1    Wearne, S.L.2
  • 8
    • 5644294269 scopus 로고
    • Electroviscous fluids. I. Rheological properties
    • Klass D.L., and Martinek T.W. Electroviscous fluids. I. Rheological properties. J. Appl. Phys. 38 1 (1967) 67-74
    • (1967) J. Appl. Phys. , vol.38 , Issue.1 , pp. 67-74
    • Klass, D.L.1    Martinek, T.W.2
  • 9
    • 0034355283 scopus 로고    scopus 로고
    • Embedding of function spaces of variable order of differentiation
    • Leopold H.G. Embedding of function spaces of variable order of differentiation. Czech. Math. J. 49 (1999) 633-644
    • (1999) Czech. Math. J. , vol.49 , pp. 633-644
    • Leopold, H.G.1
  • 10
    • 33751545053 scopus 로고    scopus 로고
    • Fractional high order methods for the nonlinear fractional ordinary differential equation
    • Lin R., and Liu F. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 6 (2006) 856-869
    • (2006) Nonlinear Anal. , vol.6 , pp. 856-869
    • Lin, R.1    Liu, F.2
  • 11
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of space fractional Fokker-Planck equation
    • Liu F., Anh V., and Turne I. Numerical solution of space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004) 209-219
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turne, I.3
  • 12
    • 33751548431 scopus 로고    scopus 로고
    • Numerical simulation for solute transport in fractal porous media
    • Liu F., Anh V., Turner I., and Zhuang P. Numerical simulation for solute transport in fractal porous media. ANZIAM J. 45 E (2004) 461-473
    • (2004) ANZIAM J. , vol.45 , Issue.E , pp. 461-473
    • Liu, F.1    Anh, V.2    Turner, I.3    Zhuang, P.4
  • 13
    • 33846798041 scopus 로고    scopus 로고
    • Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method
    • Liu Q., Liu F., Turner I., and Anh V. Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Phys. Comput. 222 (2007) 57-70
    • (2007) J. Phys. Comput. , vol.222 , pp. 57-70
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 14
    • 33751533397 scopus 로고    scopus 로고
    • Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
    • Liu F., Shen S., Anh V., and Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46 E (2005) 488-504
    • (2005) ANZIAM J. , vol.46 , Issue.E , pp. 488-504
    • Liu, F.1    Shen, S.2    Anh, V.3    Turner, I.4
  • 16
    • 0036650957 scopus 로고    scopus 로고
    • Variable-order and distributed order fractional operators
    • Lorenzo C.F., and Hartley T.T. Variable-order and distributed order fractional operators. Nonlinear Dyn. 29 (2002) 57-98
    • (2002) Nonlinear Dyn. , vol.29 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 17
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M., and Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004) 65-77
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.1    Tadjeran, C.2
  • 22
    • 2442585557 scopus 로고    scopus 로고
    • Fractional generalized random fields of variable order
    • Ruiz-Medina M.D., Anh V.V., and Angulo J.M. Fractional generalized random fields of variable order. Stochastic Anal. Appl. 22 2 (2004) 775-799
    • (2004) Stochastic Anal. Appl. , vol.22 , Issue.2 , pp. 775-799
    • Ruiz-Medina, M.D.1    Anh, V.V.2    Angulo, J.M.3
  • 24
    • 0042708009 scopus 로고    scopus 로고
    • Fractional reaction-diffusion equation
    • Seki K., Wojcik M., and Tachiya M. Fractional reaction-diffusion equation. J. Chem. Phys. 119 (2003) 2165-2174
    • (2003) J. Chem. Phys. , vol.119 , pp. 2165-2174
    • Seki, K.1    Wojcik, M.2    Tachiya, M.3
  • 25
    • 70549107817 scopus 로고    scopus 로고
    • Error analysis of an explicit finite difference approximation for the space fractional diffusion
    • Shen S., and Liu F. Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46 E (2005) 871-887
    • (2005) ANZIAM J. , vol.46 , Issue.E , pp. 871-887
    • Shen, S.1    Liu, F.2
  • 27
    • 41449094744 scopus 로고    scopus 로고
    • Solving linear and nonlinear space-time fractional reaction-diffusion equations by Adomian decomposition method
    • Yu Q., Liu F., Anh V., and Turner I. Solving linear and nonlinear space-time fractional reaction-diffusion equations by Adomian decomposition method. Int. J. Numer. Meth. Eng. 74 (2008) 138-158
    • (2008) Int. J. Numer. Meth. Eng. , vol.74 , pp. 138-158
    • Yu, Q.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 28
    • 84867978055 scopus 로고    scopus 로고
    • Implicit difference approximation for the time fractional diffusion equation
    • Zhuang P., and Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 3 (2006) 87-99
    • (2006) J. Appl. Math. Comput. , vol.22 , Issue.3 , pp. 87-99
    • Zhuang, P.1    Liu, F.2
  • 29
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
    • Zhuang P., Liu F., Anh V., and Turner I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46 2 (2008) 1079-1095
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.