메뉴 건너뛰기




Volumn 241, Issue , 2014, Pages 140-150

A Chebyshev spectral method for solving Riemann-Liouville fractional boundary value problems

Author keywords

Boundary value problems; Chebyshev polynomials; Collocation method; Riemann Liouville fractional calculus

Indexed keywords

BOUNDARY VALUE PROBLEMS;

EID: 84901822925     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2014.05.012     Document Type: Article
Times cited : (19)

References (34)
  • 1
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R. Agarwal, D. O'Regan, and S. Staněk Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations J. Math. Anal. Appl. 371 2010 57 68
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.1    O'Regan, D.2    Staněk, S.3
  • 2
    • 85087595614 scopus 로고    scopus 로고
    • Some existence results for boundary value problems of fractional semilinear evolution equations
    • B. Ahmad Some existence results for boundary value problems of fractional semilinear evolution equations Electron. J. Qual. Theory Differ. Equ. 28 2009 1 7
    • (2009) Electron. J. Qual. Theory Differ. Equ. , vol.28 , pp. 1-7
    • Ahmad, B.1
  • 3
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 4
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Z. Bai, and H. Lü Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505 (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 5
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • (Art. ID 324561)
    • M. Belmekki, J.J. Nieto, and R. Rodriguez-López Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 1 18 (Art. ID 324561)
    • (2009) Bound. Value Probl. , pp. 1-18
    • Belmekki, M.1    Nieto, J.J.2    Rodriguez-López, R.3
  • 6
    • 84866046515 scopus 로고    scopus 로고
    • The operational matrix of fractional integration for shifted Chebyshev polynomials
    • A. Bhrawy, and A. Alofi The operational matrix of fractional integration for shifted Chebyshev polynomials Appl. Math. Lett. 26 2013 25 31
    • (2013) Appl. Math. Lett. , vol.26 , pp. 25-31
    • Bhrawy, A.1    Alofi, A.2
  • 7
    • 84872609098 scopus 로고    scopus 로고
    • A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations
    • A. Bhrawy, M. Tharwat, and A. Yildirim A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations Appl. Math. Model. 37 2013 4245 4252
    • (2013) Appl. Math. Model. , vol.37 , pp. 4245-4252
    • Bhrawy, A.1    Tharwat, M.2    Yildirim, A.3
  • 9
    • 42149141688 scopus 로고    scopus 로고
    • An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives
    • K. Diethelm An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives Numer. Algorithms 47 2008 361 390
    • (2008) Numer. Algorithms , vol.47 , pp. 361-390
    • Diethelm, K.1
  • 10
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • E. Doha, A. Bhrawy, and S. Ezz-Eldien A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order Comput. Math. Appl. 62 2011 2364 2373
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.1    Bhrawy, A.2    Ezz-Eldien, S.3
  • 11
    • 79960555480 scopus 로고    scopus 로고
    • Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
    • E. Doha, A. Bhrawy, and S. Ezz-Eldien Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations Appl. Math. Model. 35 2011 5662 5672
    • (2011) Appl. Math. Model. , vol.35 , pp. 5662-5672
    • Doha, E.1    Bhrawy, A.2    Ezz-Eldien, S.3
  • 12
    • 84861893481 scopus 로고    scopus 로고
    • A new Jacobi operational matrix: An application for solving fractional differential equations
    • E. Doha, A. Bhrawy, and S. Ezz-Eldien A new Jacobi operational matrix: an application for solving fractional differential equations Appl. Math. Model. 36 2012 4931 4943
    • (2012) Appl. Math. Model. , vol.36 , pp. 4931-4943
    • Doha, E.1    Bhrawy, A.2    Ezz-Eldien, S.3
  • 13
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C. Goodrich Existence of a positive solution to a class of fractional differential equations Appl. Math. Lett. 23 2010 1050 1055
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.1
  • 14
    • 84881584962 scopus 로고    scopus 로고
    • Fractional boundary value problems with integral boundary conditions
    • J.R. Graef, L. Kong, Q. Kong, and M. Wang Fractional boundary value problems with integral boundary conditions Appl. Anal. 92 2013 2008 2020
    • (2013) Appl. Anal. , vol.92 , pp. 2008-2020
    • Graef, J.R.1    Kong, L.2    Kong, Q.3    Wang, M.4
  • 15
    • 85086493297 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition
    • J.R. Graef, L. Kong, Q. Kong, and M. Wang Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition Electron. J. Qual. Theory Differ. Equ. 2013 55 2013 1 11
    • (2013) Electron. J. Qual. Theory Differ. Equ. , vol.2013 , Issue.55 , pp. 1-11
    • Graef, J.R.1    Kong, L.2    Kong, Q.3    Wang, M.4
  • 16
    • 84860461303 scopus 로고    scopus 로고
    • Positive solutions for a semipositone fractional boundary value problem with a forcing term
    • J.R. Graef, L. Kong, and B. Yang Positive solutions for a semipositone fractional boundary value problem with a forcing term Fract. Calc. Appl. Anal. 15 2012 8 24
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , pp. 8-24
    • Graef, J.R.1    Kong, L.2    Yang, B.3
  • 17
    • 84864939186 scopus 로고    scopus 로고
    • Solvability of a two-point fractional boundary value problem
    • A. Guezane-Lakoud, and R. Khaldi Solvability of a two-point fractional boundary value problem J. Nonlinear Sci. Appl. 5 2012 64 73
    • (2012) J. Nonlinear Sci. Appl. , vol.5 , pp. 64-73
    • Guezane-Lakoud, A.1    Khaldi, R.2
  • 19
    • 84858110986 scopus 로고    scopus 로고
    • Wavelet collocation method for solving multiorder fractional differential equations
    • (Art. ID 542401)
    • M. Heydari, M. Hooshmandasl, F. Maalek Ghaini, and F. Mohammadi Wavelet collocation method for solving multiorder fractional differential equations J. Appl. Math. 2012 1 19 (Art. ID 542401)
    • (2012) J. Appl. Math. , pp. 1-19
    • Heydari, M.1    Hooshmandasl, M.2    Maalek Ghaini, F.3    Mohammadi, F.4
  • 21
    • 71649090846 scopus 로고    scopus 로고
    • The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application
    • D. Jiang, and C. Yuan The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application Nonlinear Anal. 72 2010 710 719
    • (2010) Nonlinear Anal. , vol.72 , pp. 710-719
    • Jiang, D.1    Yuan, C.2
  • 24
    • 84863231941 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions
    • Q. Kong, and M. Wang Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions Electron. J. Qual. Theory Differ. Equ. 2012 17 2012 1 13
    • (2012) Electron. J. Qual. Theory Differ. Equ. , vol.2012 , Issue.17 , pp. 1-13
    • Kong, Q.1    Wang, M.2
  • 25
    • 79952454978 scopus 로고    scopus 로고
    • Numerical approaches to fractional calculus and fractional ordinary differential equation
    • C. Li, A. Chen, and J. Ye Numerical approaches to fractional calculus and fractional ordinary differential equation J. Comput. Phys. 230 2011 3352 3368
    • (2011) J. Comput. Phys. , vol.230 , pp. 3352-3368
    • Li, C.1    Chen, A.2    Ye, J.3
  • 26
    • 84868198807 scopus 로고    scopus 로고
    • Spectral approximations to the fractional integral and derivative
    • C. Li, F. Zeng, and F. Liu Spectral approximations to the fractional integral and derivative Fract. Calc. Appl. Anal. 15 2012 383 406
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , pp. 383-406
    • Li, C.1    Zeng, F.2    Liu, F.3
  • 27
    • 58149289495 scopus 로고    scopus 로고
    • Discretized fractional calculus with a series of Chebyshev polynomial
    • T. Miyakoda Discretized fractional calculus with a series of Chebyshev polynomial Electron. Notes Theor. Comput. Sci. 225 2009 239 244
    • (2009) Electron. Notes Theor. Comput. Sci. , vol.225 , pp. 239-244
    • Miyakoda, T.1
  • 28
    • 84875393496 scopus 로고    scopus 로고
    • Positive solutions of a fractional thermostat model
    • (Art. no. 5)
    • J.J. Nieto, and J. Pimentel Positive solutions of a fractional thermostat model Bound. Value Probl. 2013 (Art. no. 5)
    • (2013) Bound. Value Probl.
    • Nieto, J.J.1    Pimentel, J.2
  • 29
    • 54249111560 scopus 로고    scopus 로고
    • Quadrature rule for Abel's equations: Uniformly approximating fractional derivatives
    • H. Sugiura, and T. Hasegawa Quadrature rule for Abel's equations: uniformly approximating fractional derivatives J. Comput. Appl. Math. 223 2009 459 468
    • (2009) J. Comput. Appl. Math. , vol.223 , pp. 459-468
    • Sugiura, H.1    Hasegawa, T.2
  • 31
    • 0004136180 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics Philadelphia, PA
    • L. Trefethen Spectral methods in MATLAB 2000 Society for Industrial and Applied Mathematics Philadelphia, PA
    • (2000) Spectral Methods in MATLAB
    • Trefethen, L.1
  • 32
    • 81755181012 scopus 로고    scopus 로고
    • Monotone and concave positive solutions to a boundary value problem for higher-order fractional differential equation
    • (Art. ID 430457)
    • J. Wang, H. Xiang, and Y. Zhao Monotone and concave positive solutions to a boundary value problem for higher-order fractional differential equation Abstr. Appl. Anal. 2011 1 14 (Art. ID 430457)
    • (2011) Abstr. Appl. Anal. , pp. 1-14
    • Wang, J.1    Xiang, H.2    Zhao, Y.3
  • 33
    • 77953682735 scopus 로고    scopus 로고
    • Unique positive solutions for fractional differential equation boundary value problems
    • L. Yang, and H. Chen Unique positive solutions for fractional differential equation boundary value problems Appl. Math. Lett. 23 2010 1095 1098
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1095-1098
    • Yang, L.1    Chen, H.2
  • 34
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.