메뉴 건너뛰기




Volumn 36, Issue 4, 2014, Pages B684-B707

Discontinuous spectral element methods for time-and space-fractional advection equations

Author keywords

Fractional basis functions; Fractional pdes; Jacobi polyfractonomials; Spectral convergence

Indexed keywords

ADVECTION; CONVERGENCE OF NUMERICAL METHODS; GALERKIN METHODS; INTEGRATION; POLYNOMIALS; TENSORS; TESTING;

EID: 84986922240     PISSN: 10648275     EISSN: 10957197     Source Type: Journal    
DOI: 10.1137/130940967     Document Type: Article
Times cited : (100)

References (43)
  • 1
    • 0014505877 scopus 로고
    • Integral representations for Jacobi polynomials and some applications
    • R. Askey and J. Fitch, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl., 26 (1969), pp. 411-437.
    • (1969) J. Math. Anal. Appl. , vol.26 , pp. 411-437
    • Askey, R.1    Fitch, J.2
  • 2
    • 0000078998 scopus 로고    scopus 로고
    • From continuous time random walks to the fractional Fokker-Planck equation
    • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132.
    • (2000) Phys. Rev. E. , vol.61 , pp. 132
    • Barkai, E.1    Metzler, R.2    Klafter, J.3
  • 4
    • 84873301683 scopus 로고    scopus 로고
    • A high order schema for the numerical solution of the fractional ordinary differential equations
    • J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), pp. 154-168.
    • (2013) J. Comput. Phys. , vol.238 , pp. 154-168
    • Cao, J.1    Xu, C.2
  • 7
    • 84916132305 scopus 로고
    • Resonant oscillations in closed tubes
    • W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), pp. 44-64.
    • (1964) J. Fluid Mech. , vol.18 , pp. 44-64
    • Chester, W.1
  • 8
    • 84996130235 scopus 로고    scopus 로고
    • Local discontinuous Galerkin methods for fractional diffusion equations
    • W. H. Deng and J. S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM: Math. Model. Numer. Anal., 47 (2013), pp. 1845-1864.
    • (2013) ESAIM: Math. Model. Numer. Anal. , vol.47 , pp. 1845-1864
    • Deng, W.H.1    Hesthaven, J.S.2
  • 9
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), pp. 229-248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 10
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite-element solution of a fractional order two-point boundary value problem
    • G. J. Fix and J. P. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48 (2004), pp. 1017-1033.
    • (2004) Comput. Math. Appl. , vol.48 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 11
    • 0003753516 scopus 로고
    • Time-dependent problems and difference methods
    • Jhon Wiley, New York
    • B. Gustafsson, H. O. Kreiss, and J. Oliger, Time-Dependent Problems and Difference Methods, Pure and Appl. Methods 67, Jhon Wiley, New York, 1995.
    • (1995) Pure and Appl. Methods , vol.67
    • Gustafsson, B.1    Kreiss, H.O.2    Oliger, J.3
  • 12
    • 75949112770 scopus 로고    scopus 로고
    • A comparison of three Eulerian numerical methods for fractional-order transport models
    • E. Hanert, A comparison of three Eulerian numerical methods for fractional-order transport models, Environ. Fluid Mech., 10 (2010), pp. 7-20.
    • (2010) Environ. Fluid Mech. , vol.10 , pp. 7-20
    • Hanert, E.1
  • 13
    • 0343526808 scopus 로고    scopus 로고
    • Fractional reaction-diffusion
    • B. Henry and S. Wearne, Fractional reaction-diffusion, Phys. A, 276 (2000), pp. 448-455.
    • (2000) Phys. A , vol.276 , pp. 448-455
    • Henry, B.1    Wearne, S.2
  • 15
    • 0028377922 scopus 로고
    • Krylov subspace methods for solving large Lyapunov equations
    • I. M. Jaimoukha and E. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227-251.
    • (1994) SIAM J. Numer. Anal. , vol.31 , pp. 227-251
    • Jaimoukha, I.M.1    Kasenally, E.2
  • 17
    • 0000371714 scopus 로고
    • Propagation of simple non-linear waves in gas filled tubes with friction
    • J. J. Keller, Propagation of simple non-linear waves in gas filled tubes with friction, Z.Angew. Math. Phys., 32 (1981), pp. 170-181.
    • (1981) Z. Angew. Math. Phys. , vol.32 , pp. 170-181
    • Keller, J.J.1
  • 18
    • 78651444144 scopus 로고    scopus 로고
    • On the numerical solutions for the fractional diffusion equation
    • M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), pp. 2535-2542.
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 2535-2542
    • Khader, M.M.1
  • 19
    • 84857583048 scopus 로고    scopus 로고
    • The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method
    • M. M. Khader and A. S. Hendy, The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method, Internat. J. Pure Appl. Math., 74 (2012), pp. 287-297.
    • (2012) Internat. J. Pure Appl. Math. , vol.74 , pp. 287-297
    • Khader, M.M.1    Hendy, A.S.2
  • 20
    • 10844270442 scopus 로고    scopus 로고
    • Application of fractional calculus to fluid mechanics
    • V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Engrg., 124 (2002), pp. 803-806.
    • (2002) J. Fluids Engrg. , vol.124 , pp. 803-806
    • Kulish, V.V.1    Lage, J.L.2
  • 21
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T. Langlands and B. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.1    Henry, B.2
  • 22
    • 0003733595 scopus 로고    scopus 로고
    • Finite volume methods for hyperbolic problems
    • Cambridge University Press, Cambridge, UK
    • R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math. 31, Cambridge University Press, Cambridge, UK, 2002.
    • (2002) Cambridge Texts Appl. Math. , vol.31
    • LeVeque, R.J.1
  • 23
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 24
    • 77954143774 scopus 로고    scopus 로고
    • Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
    • X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051.
    • (2010) Commun. Comput. Phys. , vol.8 , pp. 1016-1051
    • Li, X.1    Xu, C.2
  • 25
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 26
    • 70350618343 scopus 로고    scopus 로고
    • Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
    • W. McLean and K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algorithms, 52 (2009), pp. 69-88.
    • (2009) Numer. Algorithms , vol.52 , pp. 69-88
    • McLean, W.1    Mustapha, K.2
  • 27
    • 84866652595 scopus 로고    scopus 로고
    • Stochastic models for fractional calculus
    • de Gruyter, Berlin
    • M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, DeGruyter Stud. Math. 43 de Gruyter, Berlin, 2012.
    • (2012) DeGruyter Stud. Math. , vol.43
    • Meerschaert, M.M.1    Sikorskii, A.2
  • 29
    • 0033295674 scopus 로고    scopus 로고
    • A cyclic low-rank Smith method for large sparse Lyapunov equations
    • T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21 (1999), pp. 1401-1418.
    • (1999) SIAM J. Sci. Comput. , vol.21 , pp. 1401-1418
    • Penzl, T.1
  • 31
    • 33646161468 scopus 로고    scopus 로고
    • Numerical solution of fractional integro-differential equations by collocation method
    • E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), pp. 1-6.
    • (2006) Appl. Math. Comput. , vol.176 , pp. 1-6
    • Rawashdeh, E.A.1
  • 33
    • 33646191893 scopus 로고    scopus 로고
    • Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in r2
    • J. P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in r2, J. Comput. Appl. Math., 193 (2006), pp. 243-268.
    • (2006) J. Comput. Appl. Math. , vol.193 , pp. 243-268
    • Roop, J.P.1
  • 35
    • 0026135818 scopus 로고
    • Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves
    • N. Sugimoto, Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves, J. Fluid Mech, 225 (1991), pp. 631-653.
    • (1991) J. Fluid Mech. , vol.225 , pp. 631-653
    • Sugimoto, N.1
  • 36
    • 0022130907 scopus 로고
    • Generalized Burgers' equation for nonlinear viscoelastic waves
    • N. Sugimoto and T. Kakutani, Generalized Burgers' equation for nonlinear viscoelastic waves, Wave Motion, 7 (1985), pp. 447-458.
    • (1985) Wave Motion , vol.7 , pp. 447-458
    • Sugimoto, N.1    Kakutani, T.2
  • 37
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.1    Wu, X.2
  • 38
    • 38249030580 scopus 로고
    • Iterative solution of the Lyapunov matrix equation
    • E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988), pp. 87-90.
    • (1988) Appl. Math. Lett. , vol.1 , pp. 87-90
    • Wachspress, E.L.1
  • 40
    • 84886782096 scopus 로고    scopus 로고
    • Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations
    • M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations, J. Comput. Phys., 47 (2013), pp. 2108-2131.
    • (2013) J. Comput. Phys. , vol.47 , pp. 2108-2131
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 41
    • 84886791142 scopus 로고    scopus 로고
    • Exponentially accurate spectral and spectral element methods for fractional ODEs
    • M. Zayernouri and G. E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257 (2014), pp. 460-480.
    • (2014) J. Comput. Phys. , vol.257 , pp. 460-480
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.