-
1
-
-
4043151477
-
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:R161-R208.
-
(2004)
J. Phys. A
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
2
-
-
31144434675
-
From diffusion to anomalous diffusion: A century after Einstein's Brownian motion
-
Sokolov I.M., Klafter J. From diffusion to anomalous diffusion: A century after Einstein's Brownian motion. Chaos 2005, 15:026103-026103-7.
-
(2005)
Chaos
, vol.15
-
-
Sokolov, I.M.1
Klafter, J.2
-
3
-
-
0030651602
-
Analysis and design of fractional-order digital control systems
-
Tenreiro Machado J.A. Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 1997, 27:107-122.
-
(1997)
Syst. Anal. Model. Simul.
, vol.27
, pp. 107-122
-
-
Tenreiro Machado, J.A.1
-
4
-
-
62849085116
-
A central difference numerical scheme for fractional optimal control problems
-
Baleanu D., Defterli O., Agrawal O.P. A central difference numerical scheme for fractional optimal control problems. J. Vip. Contr. 2009, 15:583-597.
-
(2009)
J. Vip. Contr.
, vol.15
, pp. 583-597
-
-
Baleanu, D.1
Defterli, O.2
Agrawal, O.P.3
-
5
-
-
0034502929
-
Fractional calculus and continuous-time finance I: the waiting-time distribution
-
Mainardi F., Raberto M., Gorenflo R., Scalas E. Fractional calculus and continuous-time finance I: the waiting-time distribution. Physica A. 2000, 287:468-481.
-
(2000)
Physica A.
, vol.287
, pp. 468-481
-
-
Mainardi, F.1
Raberto, M.2
Gorenflo, R.3
Scalas, E.4
-
7
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
8
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
9
-
-
46049119633
-
Implicit finite difference approximation for time fractional diffusion equation
-
Murio D.A. Implicit finite difference approximation for time fractional diffusion equation. Comput. Math. Appl. 2008, 56:1138-1145.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1138-1145
-
-
Murio, D.A.1
-
10
-
-
68949098580
-
A finite difference method for fractional partial differential equation
-
Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215:524-529.
-
(2009)
Appl. Math. Comput.
, vol.215
, pp. 524-529
-
-
Zhang, Y.1
-
11
-
-
25444463578
-
Finite difference methods for two-dimensional fractional dispersion equation
-
Meerschaert M.M., Scheffler H.P., Tadjeran C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 2006, 211:249-261.
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 249-261
-
-
Meerschaert, M.M.1
Scheffler, H.P.2
Tadjeran, C.3
-
12
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
13
-
-
33845628108
-
A second-order accurate numerical method for the two-dimensional fractional diffusion equation
-
Tadjeran C., Meerschaert M.M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 2007, 220:813-823.
-
(2007)
J. Comput. Phys.
, vol.220
, pp. 813-823
-
-
Tadjeran, C.1
Meerschaert, M.M.2
-
14
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
15
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
Chen C., Liu F., Burrage K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-769.
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.1
Liu, F.2
Burrage, K.3
-
16
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T., Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.1
Henry, B.2
-
17
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
70350134071
-
Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
-
Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:645-667.
-
(2009)
IMA J. Appl. Math.
, vol.74
, pp. 645-667
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
19
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
20
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
-
Chen C., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 2010, 54:1-21.
-
(2010)
Numer. Algor.
, vol.54
, pp. 1-21
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
21
-
-
30744474991
-
A fully difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X. A fully difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.2
-
22
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
23
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du R., Cao W.R., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.R.2
Sun, Z.Z.3
-
24
-
-
78649334165
-
A compact difference scheme for the fractional sub-diffusion equation
-
Guanghua, Gao, Sun Z.Z. A compact difference scheme for the fractional sub-diffusion equation. J. Comput. Phys. 2011, 230:586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Guanghua1
Gao2
Sun, Z.Z.3
-
25
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.1
Liu, F.2
Anh, V.3
Turner, I.4
-
27
-
-
84861330421
-
-
B.I.
-
T.A.M. Langlans, B. Henry,S. Wearne, Solution of a fractional cable equation: finite case, B.I. http://maths.unsw.edu.au/applied/files/2005/amr05-34.pdf.
-
-
-
Langlans, T.A.M.1
Henry, B.2
Wearne, S.3
-
28
-
-
41549083671
-
Fractional cable models for spiny neuronal dendrites
-
Henry, Langlands T.A.M., Wearne S.L. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 2008, 100:128103-128106.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 128103-128106
-
-
Henry1
Langlands, T.A.M.2
Wearne, S.L.3
-
29
-
-
78649919287
-
Two new implicit numerical methods for the fractional cable equation
-
Liu F., Yang Q., Turner I. Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 2011, 6:110091-110097.
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, pp. 110091-110097
-
-
Liu, F.1
Yang, Q.2
Turner, I.3
-
30
-
-
77953128366
-
∞ convergence of a difference scheme for the coupled schrödinger equations
-
∞ convergence of a difference scheme for the coupled schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3330.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3286-3330
-
-
Sun, Z.Z.1
Zhao, D.2
-
31
-
-
77955304380
-
Maximum norm error estimates of the Cranck-Niclson scheme for solving a linear moving boundary problem
-
Cao W., Sun Z.Z. Maximum norm error estimates of the Cranck-Niclson scheme for solving a linear moving boundary problem. J. Comput. Appl. Math. 2010, 234:2578-2586.
-
(2010)
J. Comput. Appl. Math.
, vol.234
, pp. 2578-2586
-
-
Cao, W.1
Sun, Z.Z.2
-
32
-
-
79251597042
-
Maximum norm error estimates of efficient difference schemes for second-order wave equations
-
Liao H., Sun Z.Z. Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 2011, 235:2217-2233.
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 2217-2233
-
-
Liao, H.1
Sun, Z.Z.2
-
33
-
-
70349731416
-
A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation
-
Wang T., Guo B. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 2009, 233:878-888.
-
(2009)
J. Comput. Appl. Math.
, vol.233
, pp. 878-888
-
-
Wang, T.1
Guo, B.2
|