메뉴 건너뛰기




Volumn 36, Issue 9, 2012, Pages 4027-4043

Implicit compact difference schemes for the fractional cable equation

Author keywords

Compact finite difference scheme; Convergence; Fractional cable equation; Stability

Indexed keywords

CABLE EQUATION; COMPACT DIFFERENCE SCHEME; COMPACT FINITE DIFFERENCES; COMPACT SCHEMES; COMPUTATIONAL RESULTS; CONVERGENCE; CONVERGENCE ORDER; ENERGY METHOD; INNER PRODUCT; NUMERICAL EXPERIMENTS;

EID: 84861338331     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2011.11.027     Document Type: Article
Times cited : (57)

References (35)
  • 1
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:R161-R208.
    • (2004) J. Phys. A , vol.37
    • Metzler, R.1    Klafter, J.2
  • 2
    • 31144434675 scopus 로고    scopus 로고
    • From diffusion to anomalous diffusion: A century after Einstein's Brownian motion
    • Sokolov I.M., Klafter J. From diffusion to anomalous diffusion: A century after Einstein's Brownian motion. Chaos 2005, 15:026103-026103-7.
    • (2005) Chaos , vol.15
    • Sokolov, I.M.1    Klafter, J.2
  • 3
    • 0030651602 scopus 로고    scopus 로고
    • Analysis and design of fractional-order digital control systems
    • Tenreiro Machado J.A. Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 1997, 27:107-122.
    • (1997) Syst. Anal. Model. Simul. , vol.27 , pp. 107-122
    • Tenreiro Machado, J.A.1
  • 4
    • 62849085116 scopus 로고    scopus 로고
    • A central difference numerical scheme for fractional optimal control problems
    • Baleanu D., Defterli O., Agrawal O.P. A central difference numerical scheme for fractional optimal control problems. J. Vip. Contr. 2009, 15:583-597.
    • (2009) J. Vip. Contr. , vol.15 , pp. 583-597
    • Baleanu, D.1    Defterli, O.2    Agrawal, O.P.3
  • 5
    • 0034502929 scopus 로고    scopus 로고
    • Fractional calculus and continuous-time finance I: the waiting-time distribution
    • Mainardi F., Raberto M., Gorenflo R., Scalas E. Fractional calculus and continuous-time finance I: the waiting-time distribution. Physica A. 2000, 287:468-481.
    • (2000) Physica A. , vol.287 , pp. 468-481
    • Mainardi, F.1    Raberto, M.2    Gorenflo, R.3    Scalas, E.4
  • 6
    • 59649085150 scopus 로고    scopus 로고
    • Solving the fractional order Bloch equation
    • Magin R., Feng X., Baleanu D. Solving the fractional order Bloch equation. Conc. Mag. Reson. Part A 2009, 34A(1):16-23.
    • (2009) Conc. Mag. Reson. Part A , vol.34 A , Issue.1 , pp. 16-23
    • Magin, R.1    Feng, X.2    Baleanu, D.3
  • 7
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 8
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 9
    • 46049119633 scopus 로고    scopus 로고
    • Implicit finite difference approximation for time fractional diffusion equation
    • Murio D.A. Implicit finite difference approximation for time fractional diffusion equation. Comput. Math. Appl. 2008, 56:1138-1145.
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1138-1145
    • Murio, D.A.1
  • 10
    • 68949098580 scopus 로고    scopus 로고
    • A finite difference method for fractional partial differential equation
    • Zhang Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215:524-529.
    • (2009) Appl. Math. Comput. , vol.215 , pp. 524-529
    • Zhang, Y.1
  • 11
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • Meerschaert M.M., Scheffler H.P., Tadjeran C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 2006, 211:249-261.
    • (2006) J. Comput. Phys. , vol.211 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 12
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 13
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • Tadjeran C., Meerschaert M.M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 2007, 220:813-823.
    • (2007) J. Comput. Phys. , vol.220 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 14
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 15
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
    • Chen C., Liu F., Burrage K. Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 2008, 198:754-769.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.1    Liu, F.2    Burrage, K.3
  • 16
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T., Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205:719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.1    Henry, B.2
  • 17
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
    • Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:645-667.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 645-667
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 19
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 20
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • Chen C., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 2010, 54:1-21.
    • (2010) Numer. Algor. , vol.54 , pp. 1-21
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 21
    • 30744474991 scopus 로고    scopus 로고
    • A fully difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X. A fully difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.2
  • 22
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 23
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W.R., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 24
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equation
    • Guanghua, Gao, Sun Z.Z. A compact difference scheme for the fractional sub-diffusion equation. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Guanghua1    Gao2    Sun, Z.Z.3
  • 25
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
    • Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 27
    • 84861330421 scopus 로고    scopus 로고
    • B.I.
    • T.A.M. Langlans, B. Henry,S. Wearne, Solution of a fractional cable equation: finite case, B.I. http://maths.unsw.edu.au/applied/files/2005/amr05-34.pdf.
    • Langlans, T.A.M.1    Henry, B.2    Wearne, S.3
  • 28
    • 41549083671 scopus 로고    scopus 로고
    • Fractional cable models for spiny neuronal dendrites
    • Henry, Langlands T.A.M., Wearne S.L. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 2008, 100:128103-128106.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 128103-128106
    • Henry1    Langlands, T.A.M.2    Wearne, S.L.3
  • 29
    • 78649919287 scopus 로고    scopus 로고
    • Two new implicit numerical methods for the fractional cable equation
    • Liu F., Yang Q., Turner I. Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 2011, 6:110091-110097.
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , pp. 110091-110097
    • Liu, F.1    Yang, Q.2    Turner, I.3
  • 30
    • 77953128366 scopus 로고    scopus 로고
    • ∞ convergence of a difference scheme for the coupled schrödinger equations
    • ∞ convergence of a difference scheme for the coupled schrödinger equations. Comput. Math. Appl. 2010, 59:3286-3330.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3286-3330
    • Sun, Z.Z.1    Zhao, D.2
  • 31
    • 77955304380 scopus 로고    scopus 로고
    • Maximum norm error estimates of the Cranck-Niclson scheme for solving a linear moving boundary problem
    • Cao W., Sun Z.Z. Maximum norm error estimates of the Cranck-Niclson scheme for solving a linear moving boundary problem. J. Comput. Appl. Math. 2010, 234:2578-2586.
    • (2010) J. Comput. Appl. Math. , vol.234 , pp. 2578-2586
    • Cao, W.1    Sun, Z.Z.2
  • 32
    • 79251597042 scopus 로고    scopus 로고
    • Maximum norm error estimates of efficient difference schemes for second-order wave equations
    • Liao H., Sun Z.Z. Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 2011, 235:2217-2233.
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 2217-2233
    • Liao, H.1    Sun, Z.Z.2
  • 33
    • 70349731416 scopus 로고    scopus 로고
    • A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation
    • Wang T., Guo B. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 2009, 233:878-888.
    • (2009) J. Comput. Appl. Math. , vol.233 , pp. 878-888
    • Wang, T.1    Guo, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.