-
1
-
-
0036207347
-
Modeling and Simulation of Genetic Regulatory Systems: A Literature Review
-
10.1089/10665270252833208, 11911796
-
de Jong H. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
-
(2002)
Journal of Computational Biology
, vol.9
, pp. 67-103
-
-
de Jong, H.1
-
2
-
-
14844286390
-
Reverse-engineering transcription control networks
-
Garner TS, Faith JJ. Reverse-engineering transcription control networks. Physics of Life Reviews 2005, 2:65-88.
-
(2005)
Physics of Life Reviews
, vol.2
, pp. 65-88
-
-
Garner, T.S.1
Faith, J.J.2
-
3
-
-
34548753061
-
Identifying Gene Regulatory Networks from Gene Expression Data
-
Boca Raton, FL, USA: Chapman & Hall/CRC Press, Aluru S
-
Filkov V. Identifying Gene Regulatory Networks from Gene Expression Data. Handbook of Computational Molecular Biology 2005, 27.1-27.29. Boca Raton, FL, USA: Chapman & Hall/CRC Press, Aluru S.
-
(2005)
Handbook of Computational Molecular Biology
-
-
Filkov, V.1
-
4
-
-
34249853738
-
Computational and Experimental Approaches for Modeling Gene Regulatory Networks
-
10.2174/138161207780765945, 17504165
-
Goutsias J, Lee NH. Computational and Experimental Approaches for Modeling Gene Regulatory Networks. Current Pharmaceutical Design 2007, 13:1415-1436. 10.2174/138161207780765945, 17504165.
-
(2007)
Current Pharmaceutical Design
, vol.13
, pp. 1415-1436
-
-
Goutsias, J.1
Lee, N.H.2
-
5
-
-
33847055114
-
How to infer gene networks from expression profiles
-
1828749, 17299415
-
Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer gene networks from expression profiles. Molecular Systems Biology 2007, 3(78). 1828749, 17299415.
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.78
-
-
Bansal, M.1
Belcastro, V.2
Ambesi-Impiombato, A.3
di Bernardo, D.4
-
6
-
-
34249740137
-
Reverse engineering of gene regulatory networks
-
10.1049/iet-syb:20060075, 17591174
-
Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J. Reverse engineering of gene regulatory networks. IET Systems Biology 2007, 1(3):149-163. 10.1049/iet-syb:20060075, 17591174.
-
(2007)
IET Systems Biology
, vol.1
, Issue.3
, pp. 149-163
-
-
Cho, K.H.1
Choo, S.M.2
Jung, S.H.3
Kim, J.R.4
Choi, H.S.5
Kim, J.6
-
7
-
-
38449088751
-
Inferring cellular networks - a review
-
10.1186/1471-2105-8-S6-S5, 1995541, 17903286
-
Markowetz F, Spang R. Inferring cellular networks - a review. BMC Bioinformatics 2007, 8(Suppl 6):S5. 10.1186/1471-2105-8-S6-S5, 1995541, 17903286.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Markowetz, F.1
Spang, R.2
-
8
-
-
38049064018
-
Inferring Gene Regulatory Networks from Expression Data
-
Berlin: Springer, Kelemen A, Abraham A, Chen Y
-
Kaderali L, Radde N. Inferring Gene Regulatory Networks from Expression Data. Computational Intelligence in Bioinformatics, Volume 94 of Studies in Computational Intelligence 2008, 33-74. Berlin: Springer, Kelemen A, Abraham A, Chen Y., http://www.springerlink.com/content/t100323m8141840k/?p=9f516592e7b44869 91d1928407f55d48&pi=4
-
(2008)
Computational Intelligence in Bioinformatics, Volume 94 of Studies in Computational Intelligence
, pp. 33-74
-
-
Kaderali, L.1
Radde, N.2
-
13
-
-
0038048325
-
Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling
-
10.1126/science.1081900, 12843395
-
Gardner TS, di Bernardo D, Lorenzo D, Collins JJ. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science 2003, 301(5629):102-105. 10.1126/science.1081900, 12843395.
-
(2003)
Science
, vol.301
, Issue.5629
, pp. 102-105
-
-
Gardner, T.S.1
di Bernardo, D.2
Lorenzo, D.3
Collins, J.J.4
-
16
-
-
0037197936
-
Reverse engineering gene networks using singular value decomposition and robust regression
-
10.1073/pnas.092576199, 122920, 11983907
-
Yeung MKS, Tegnér J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. PNAS 2002, 99(9):6163-6168. 10.1073/pnas.092576199, 122920, 11983907.
-
(2002)
PNAS
, vol.99
, Issue.9
, pp. 6163-6168
-
-
Yeung, M.K.S.1
Tegnér, J.2
Collins, J.J.3
-
17
-
-
0036789922
-
Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
-
10.1073/pnas.192442699, 130547, 12242336
-
Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV. Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. PNAS 2002, 99(20):12841-12846. 10.1073/pnas.192442699, 130547, 12242336.
-
(2002)
PNAS
, vol.99
, Issue.20
, pp. 12841-12846
-
-
Kholodenko, B.N.1
Kiyatkin, A.2
Bruggeman, F.J.3
Sontag, E.4
Westerhoff, H.V.5
-
18
-
-
4444226267
-
Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
-
10.1093/bioinformatics/bth173, 15037511
-
Sontag E, Kiyatkin A, Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 2004, 20(12):1877-1886. 10.1093/bioinformatics/bth173, 15037511.
-
(2004)
Bioinformatics
, vol.20
, Issue.12
, pp. 1877-1886
-
-
Sontag, E.1
Kiyatkin, A.2
Kholodenko, B.N.3
-
19
-
-
18444388867
-
Identification of small scale biochemical networks based on general type systems perturbations
-
10.1111/j.1742-4658.2005.04605.x, 15853799
-
Schmidt H, Cho KH, Jacobson EW. Identification of small scale biochemical networks based on general type systems perturbations. FEBS Journal 2005, 272:2141-2151. 10.1111/j.1742-4658.2005.04605.x, 15853799.
-
(2005)
FEBS Journal
, vol.272
, pp. 2141-2151
-
-
Schmidt, H.1
Cho, K.H.2
Jacobson, E.W.3
-
20
-
-
41149097163
-
Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
-
2233642, 18021391
-
Steinke F, Seeger M, Tsuda K. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Systems Biology 2007, 1(51). 2233642, 18021391.
-
(2007)
BMC Systems Biology
, vol.1
, Issue.51
-
-
Steinke, F.1
Seeger, M.2
Tsuda, K.3
-
23
-
-
0014733809
-
Biochemical Systems Analysis: III. Dynamic Solutions using a Power-law Approximation
-
10.1016/S0022-5193(70)80013-3, 5434343
-
Savageau MA. Biochemical Systems Analysis: III. Dynamic Solutions using a Power-law Approximation. Journal of theoretical Biology 1970, 26(2):215-226. 10.1016/S0022-5193(70)80013-3, 5434343.
-
(1970)
Journal of theoretical Biology
, vol.26
, Issue.2
, pp. 215-226
-
-
Savageau, M.A.1
-
24
-
-
0025768289
-
Biochemical Systems Theory: Operational Differences Among Variant Representations and their Significance
-
10.1016/S0022-5193(05)80367-4, 1943154
-
Savegeau MA. Biochemical Systems Theory: Operational Differences Among Variant Representations and their Significance. Journal of theoretical Biology 1991, 151(4):509-530. 10.1016/S0022-5193(05)80367-4, 1943154.
-
(1991)
Journal of theoretical Biology
, vol.151
, Issue.4
, pp. 509-530
-
-
Savegeau, M.A.1
-
26
-
-
4344615317
-
A memetic inference method for gene regulatory networks based on S-Systems
-
Spieth C, Streichert F, Speer N, Zell A. A memetic inference method for gene regulatory networks based on S-Systems. Evolutionary Computation 2004, 1:152-157.
-
(2004)
Evolutionary Computation
, vol.1
, pp. 152-157
-
-
Spieth, C.1
Streichert, F.2
Speer, N.3
Zell, A.4
-
27
-
-
24344474513
-
Multi-Objective Model Optimization for Inferring Gene Regulatory Networks
-
Springer
-
Spieth C, Streichert F, Speer N, Zell A. Multi-Objective Model Optimization for Inferring Gene Regulatory Networks. Lecture Notes in Computer Science, Volume 3410/2005 2005, 607-620. Springer.
-
(2005)
Lecture Notes in Computer Science, Volume 3410/2005
, pp. 607-620
-
-
Spieth, C.1
Streichert, F.2
Speer, N.3
Zell, A.4
-
29
-
-
20144387371
-
Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
-
10.1093/bioinformatics/bti071, 15514004
-
Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 2005, 21(7):1154-1163. 10.1093/bioinformatics/bti071, 15514004.
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1154-1163
-
-
Kimura, S.1
Ide, K.2
Kashihara, A.3
Kano, M.4
Hatakeyama, M.5
Masui, R.6
Nakagawa, N.7
Yokoyama, S.8
Kuramitsu, S.9
Konagaya, A.10
-
30
-
-
33646901020
-
Reverse engineering the Gap gene network of drosophila melanogaster
-
10.1371/journal.pcbi.0020051, 1463021,1463021, 16710449
-
Perkins TJ, Jaeger J, Reinitz J, Glass L. Reverse engineering the Gap gene network of drosophila melanogaster. PLoS Computational Biology 2006, 2:e51. 10.1371/journal.pcbi.0020051, 1463021,1463021, 16710449.
-
(2006)
PLoS Computational Biology
, vol.2
-
-
Perkins, T.J.1
Jaeger, J.2
Reinitz, J.3
Glass, L.4
-
31
-
-
46349086299
-
Gene Network Dynamics controlling Keratinocyte Migration
-
2516358, 18594517
-
Busch H, Camacho-Trullio D, Rogon Z, Breuhahn K, Angel P, Eils R, Szabowski A. Gene Network Dynamics controlling Keratinocyte Migration. Molecular Systems Biology 2008, 4(199). 2516358, 18594517.
-
(2008)
Molecular Systems Biology
, vol.4
, Issue.199
-
-
Busch, H.1
Camacho-Trullio, D.2
Rogon, Z.3
Breuhahn, K.4
Angel, P.5
Eils, R.6
Szabowski, A.7
-
32
-
-
20844452570
-
A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
-
10.1093/bioinformatics/bti415, 15802287
-
Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21(12):2883-2890. 10.1093/bioinformatics/bti415, 15802287.
-
(2005)
Bioinformatics
, vol.21
, Issue.12
, pp. 2883-2890
-
-
Chen, K.C.1
Wang, T.Y.2
Tseng, H.H.3
Huang, C.Y.F.4
Kao, C.Y.5
-
33
-
-
14844307159
-
Inferring quantitative models of regulatory networks from expression data
-
Nachman I, Regev A, Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004, 201:i248-i256.
-
(2004)
Bioinformatics
, vol.201
-
-
Nachman, I.1
Regev, A.2
Friedman, N.3
-
34
-
-
32544457104
-
Least absolute regression network analysis of the murine osteoblast differentiation network
-
10.1093/bioinformatics/bti816, 16332709
-
van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT. Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22:477-484. 10.1093/bioinformatics/bti816, 16332709.
-
(2006)
Bioinformatics
, vol.22
, pp. 477-484
-
-
van Someren, E.P.1
Vaes, B.L.T.2
Steegenga, W.T.3
Sijbers, A.M.4
Dechering, K.J.5
Reinders, M.J.T.6
-
35
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Wehrli AV, Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology 2007, 6:15.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
, pp. 15
-
-
Wehrli, A.V.1
Husmeier, D.2
-
36
-
-
35648981518
-
Parameter estimation for differential equations: a generalized smoothing approach
-
Ramsay JO, Hooker G, Campbell D, Cao J. Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2007, 69(5):741-796.
-
(2007)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.69
, Issue.5
, pp. 741-796
-
-
Ramsay, J.O.1
Hooker, G.2
Campbell, D.3
Cao, J.4
-
37
-
-
0002465693
-
A spline least squares method for numerical parameter estimation in differential equations
-
Varah JM. A spline least squares method for numerical parameter estimation in differential equations. SIAM Journal on Scientific & Statistical Computing 1982, 3:28-46.
-
(1982)
SIAM Journal on Scientific & Statistical Computing
, vol.3
, pp. 28-46
-
-
Varah, J.M.1
-
38
-
-
33344464286
-
Parameter estimation in continuous-time dynamic models using principal differential analysis
-
Poyton AA, Varziri MS, McAuley KB, McLellan PJ, Ramsay JO. Parameter estimation in continuous-time dynamic models using principal differential analysis. Computers and Chemical Engineering 2006, 30:698-708.
-
(2006)
Computers and Chemical Engineering
, vol.30
, pp. 698-708
-
-
Poyton, A.A.1
Varziri, M.S.2
McAuley, K.B.3
McLellan, P.J.4
Ramsay, J.O.5
-
39
-
-
34548060998
-
Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Data
-
Berlin: Springer, Hochreiter S, Wagner R
-
Radde N, Kaderali L. Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Data. BIRD, Volume 4414 of Lecture Notes in Computer Science 2007, 1-15. Berlin: Springer, Hochreiter S, Wagner R., http://www.springerlink.com/content/k69807u72u21458u/?p=9f516592e7b44869 91d1928407f55d48&pi=1
-
(2007)
BIRD, Volume 4414 of Lecture Notes in Computer Science
, pp. 1-15
-
-
Radde, N.1
Kaderali, L.2
-
41
-
-
54249116230
-
Genetic regulatory mechanisms in the synthesis of proteins
-
Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 1961, 3:318-356.
-
(1961)
Journal of Molecular Biology
, vol.3
, pp. 318-356
-
-
Jacob, F.1
Monod, J.2
-
42
-
-
0014974440
-
On the Relation between Effector Concentration and the Rate of Induced Enzyme Synthesis
-
10.1016/S0006-3495(71)86192-1, 1484024, 4923389
-
Yagil G, Yagil E. On the Relation between Effector Concentration and the Rate of Induced Enzyme Synthesis. Biophysical Journal 1971, 11:11-27. 10.1016/S0006-3495(71)86192-1, 1484024, 4923389.
-
(1971)
Biophysical Journal
, vol.11
, pp. 11-27
-
-
Yagil, G.1
Yagil, E.2
-
43
-
-
0030986188
-
The hardwiring of development: organization and function of genomic regulatory systems
-
Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development 1997, 124:1851-1864.
-
(1997)
Development
, vol.124
, pp. 1851-1864
-
-
Arnone, M.I.1
Davidson, E.H.2
-
44
-
-
34547234238
-
Support vector machines with adaptive Lq penalty
-
Liu Y, Zhang HH, Park C, Ahn J. Support vector machines with adaptive Lq penalty. Comput Stat Data Anal 2007, 51(12):6380-6394.
-
(2007)
Comput Stat Data Anal
, vol.51
, Issue.12
, pp. 6380-6394
-
-
Liu, Y.1
Zhang, H.H.2
Park, C.3
Ahn, J.4
-
45
-
-
33745605205
-
CASPAR: A Hierarchical Bayesian Approach to predict Survival Times in Cancer from Gene Expression Data
-
10.1093/bioinformatics/btl103, 16554338
-
Kaderali L, Zander T, Faigle U, Wolf J, Schultze JL, Schrader R. CASPAR: A Hierarchical Bayesian Approach to predict Survival Times in Cancer from Gene Expression Data. Bioinformatics 2006, 22:1495-1502. 10.1093/bioinformatics/btl103, 16554338.
-
(2006)
Bioinformatics
, vol.22
, pp. 1495-1502
-
-
Kaderali, L.1
Zander, T.2
Faigle, U.3
Wolf, J.4
Schultze, J.L.5
Schrader, R.6
-
46
-
-
4243137056
-
Hybrid Monte Carlo
-
Duane D, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Physics Letters B 1987, 195:216-222.
-
(1987)
Physics Letters B
, vol.195
, pp. 216-222
-
-
Duane, D.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
48
-
-
5744249209
-
Equations of State Calculations by Fast Computing Machines
-
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH. Equations of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 1953, 21(6):1087-1092.
-
(1953)
The Journal of Chemical Physics
, vol.21
, Issue.6
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
-
49
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57:97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
50
-
-
67349095642
-
Inference of an oscillating model for the yeast cell cycle
-
Radde N, Kaderali L. Inference of an oscillating model for the yeast cell cycle. Discrete Applied Mathematics 2009, 157(10):2285-2295.
-
(2009)
Discrete Applied Mathematics
, vol.157
, Issue.10
, pp. 2285-2295
-
-
Radde, N.1
Kaderali, L.2
-
51
-
-
36249019789
-
Dialogue on Reverse Engineering Assessment and Methods: The DREAM of high throughput pathway inference
-
Annals of the New York Academy of Sciences
-
Stolovitzky G, Monroe D, Califano A. Dialogue on Reverse Engineering Assessment and Methods: The DREAM of high throughput pathway inference. 2007, 1115:1-22. Annals of the New York Academy of Sciences.
-
(2007)
, vol.1115
, pp. 1-22
-
-
Stolovitzky, G.1
Monroe, D.2
Califano, A.3
-
52
-
-
63049128934
-
A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches
-
10.1016/j.cell.2009.01.055, 19327819
-
Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP. A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches. Cell 2009, 137:172-181. 10.1016/j.cell.2009.01.055, 19327819.
-
(2009)
Cell
, vol.137
, pp. 172-181
-
-
Cantone, I.1
Marucci, L.2
Iorio, F.3
Ricci, M.A.4
Belcastro, V.5
Bansal, M.6
Santini, S.7
di Bernardo, M.8
di Bernardo, D.9
Cosma, M.P.10
-
53
-
-
84888281706
-
DREAM2 Challenge Scoring Methodology
-
DREAM2 Challenge Scoring Methodology. , http://wiki.c2b2.columbia.edu/dream/results/
-
-
-
|