메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages

Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling

Author keywords

[No Author keywords available]

Indexed keywords

COMBINATORIAL EXPLOSION; GENE REGULATORY NETWORKS; NONLINEAR DIFFERENTIAL EQUATION; POSTERIOR DISTRIBUTIONS; QUANTITATIVE DYNAMICS; REGULATORY INTERACTIONS; STOCHASTIC INFERENCE; TIME-SERIES GENE EXPRESSION DATA;

EID: 75649151459     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-448     Document Type: Article
Times cited : (42)

References (53)
  • 1
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and Simulation of Genetic Regulatory Systems: A Literature Review
    • 10.1089/10665270252833208, 11911796
    • de Jong H. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • de Jong, H.1
  • 2
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Garner TS, Faith JJ. Reverse-engineering transcription control networks. Physics of Life Reviews 2005, 2:65-88.
    • (2005) Physics of Life Reviews , vol.2 , pp. 65-88
    • Garner, T.S.1    Faith, J.J.2
  • 3
    • 34548753061 scopus 로고    scopus 로고
    • Identifying Gene Regulatory Networks from Gene Expression Data
    • Boca Raton, FL, USA: Chapman & Hall/CRC Press, Aluru S
    • Filkov V. Identifying Gene Regulatory Networks from Gene Expression Data. Handbook of Computational Molecular Biology 2005, 27.1-27.29. Boca Raton, FL, USA: Chapman & Hall/CRC Press, Aluru S.
    • (2005) Handbook of Computational Molecular Biology
    • Filkov, V.1
  • 4
    • 34249853738 scopus 로고    scopus 로고
    • Computational and Experimental Approaches for Modeling Gene Regulatory Networks
    • 10.2174/138161207780765945, 17504165
    • Goutsias J, Lee NH. Computational and Experimental Approaches for Modeling Gene Regulatory Networks. Current Pharmaceutical Design 2007, 13:1415-1436. 10.2174/138161207780765945, 17504165.
    • (2007) Current Pharmaceutical Design , vol.13 , pp. 1415-1436
    • Goutsias, J.1    Lee, N.H.2
  • 6
    • 34249740137 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks
    • 10.1049/iet-syb:20060075, 17591174
    • Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J. Reverse engineering of gene regulatory networks. IET Systems Biology 2007, 1(3):149-163. 10.1049/iet-syb:20060075, 17591174.
    • (2007) IET Systems Biology , vol.1 , Issue.3 , pp. 149-163
    • Cho, K.H.1    Choo, S.M.2    Jung, S.H.3    Kim, J.R.4    Choi, H.S.5    Kim, J.6
  • 7
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - a review
    • 10.1186/1471-2105-8-S6-S5, 1995541, 17903286
    • Markowetz F, Spang R. Inferring cellular networks - a review. BMC Bioinformatics 2007, 8(Suppl 6):S5. 10.1186/1471-2105-8-S6-S5, 1995541, 17903286.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 13
    • 0038048325 scopus 로고    scopus 로고
    • Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling
    • 10.1126/science.1081900, 12843395
    • Gardner TS, di Bernardo D, Lorenzo D, Collins JJ. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science 2003, 301(5629):102-105. 10.1126/science.1081900, 12843395.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenzo, D.3    Collins, J.J.4
  • 16
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • 10.1073/pnas.092576199, 122920, 11983907
    • Yeung MKS, Tegnér J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. PNAS 2002, 99(9):6163-6168. 10.1073/pnas.092576199, 122920, 11983907.
    • (2002) PNAS , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.S.1    Tegnér, J.2    Collins, J.J.3
  • 17
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • 10.1073/pnas.192442699, 130547, 12242336
    • Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV. Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. PNAS 2002, 99(20):12841-12846. 10.1073/pnas.192442699, 130547, 12242336.
    • (2002) PNAS , vol.99 , Issue.20 , pp. 12841-12846
    • Kholodenko, B.N.1    Kiyatkin, A.2    Bruggeman, F.J.3    Sontag, E.4    Westerhoff, H.V.5
  • 18
    • 4444226267 scopus 로고    scopus 로고
    • Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
    • 10.1093/bioinformatics/bth173, 15037511
    • Sontag E, Kiyatkin A, Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 2004, 20(12):1877-1886. 10.1093/bioinformatics/bth173, 15037511.
    • (2004) Bioinformatics , vol.20 , Issue.12 , pp. 1877-1886
    • Sontag, E.1    Kiyatkin, A.2    Kholodenko, B.N.3
  • 19
    • 18444388867 scopus 로고    scopus 로고
    • Identification of small scale biochemical networks based on general type systems perturbations
    • 10.1111/j.1742-4658.2005.04605.x, 15853799
    • Schmidt H, Cho KH, Jacobson EW. Identification of small scale biochemical networks based on general type systems perturbations. FEBS Journal 2005, 272:2141-2151. 10.1111/j.1742-4658.2005.04605.x, 15853799.
    • (2005) FEBS Journal , vol.272 , pp. 2141-2151
    • Schmidt, H.1    Cho, K.H.2    Jacobson, E.W.3
  • 20
    • 41149097163 scopus 로고    scopus 로고
    • Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
    • 2233642, 18021391
    • Steinke F, Seeger M, Tsuda K. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Systems Biology 2007, 1(51). 2233642, 18021391.
    • (2007) BMC Systems Biology , vol.1 , Issue.51
    • Steinke, F.1    Seeger, M.2    Tsuda, K.3
  • 23
    • 0014733809 scopus 로고
    • Biochemical Systems Analysis: III. Dynamic Solutions using a Power-law Approximation
    • 10.1016/S0022-5193(70)80013-3, 5434343
    • Savageau MA. Biochemical Systems Analysis: III. Dynamic Solutions using a Power-law Approximation. Journal of theoretical Biology 1970, 26(2):215-226. 10.1016/S0022-5193(70)80013-3, 5434343.
    • (1970) Journal of theoretical Biology , vol.26 , Issue.2 , pp. 215-226
    • Savageau, M.A.1
  • 24
    • 0025768289 scopus 로고
    • Biochemical Systems Theory: Operational Differences Among Variant Representations and their Significance
    • 10.1016/S0022-5193(05)80367-4, 1943154
    • Savegeau MA. Biochemical Systems Theory: Operational Differences Among Variant Representations and their Significance. Journal of theoretical Biology 1991, 151(4):509-530. 10.1016/S0022-5193(05)80367-4, 1943154.
    • (1991) Journal of theoretical Biology , vol.151 , Issue.4 , pp. 509-530
    • Savegeau, M.A.1
  • 25
    • 0032617396 scopus 로고    scopus 로고
    • Modeling regulatory networks with weight matrices
    • World Scientific
    • Weaver D, Workman C, Stormo G. Modeling regulatory networks with weight matrices. Pacific Symposium on Biocomputing 1999, 4:112-123. World Scientific.
    • (1999) Pacific Symposium on Biocomputing , vol.4 , pp. 112-123
    • Weaver, D.1    Workman, C.2    Stormo, G.3
  • 26
    • 4344615317 scopus 로고    scopus 로고
    • A memetic inference method for gene regulatory networks based on S-Systems
    • Spieth C, Streichert F, Speer N, Zell A. A memetic inference method for gene regulatory networks based on S-Systems. Evolutionary Computation 2004, 1:152-157.
    • (2004) Evolutionary Computation , vol.1 , pp. 152-157
    • Spieth, C.1    Streichert, F.2    Speer, N.3    Zell, A.4
  • 30
    • 33646901020 scopus 로고    scopus 로고
    • Reverse engineering the Gap gene network of drosophila melanogaster
    • 10.1371/journal.pcbi.0020051, 1463021,1463021, 16710449
    • Perkins TJ, Jaeger J, Reinitz J, Glass L. Reverse engineering the Gap gene network of drosophila melanogaster. PLoS Computational Biology 2006, 2:e51. 10.1371/journal.pcbi.0020051, 1463021,1463021, 16710449.
    • (2006) PLoS Computational Biology , vol.2
    • Perkins, T.J.1    Jaeger, J.2    Reinitz, J.3    Glass, L.4
  • 32
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • 10.1093/bioinformatics/bti415, 15802287
    • Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21(12):2883-2890. 10.1093/bioinformatics/bti415, 15802287.
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.F.4    Kao, C.Y.5
  • 33
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman I, Regev A, Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004, 201:i248-i256.
    • (2004) Bioinformatics , vol.201
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 34
    • 32544457104 scopus 로고    scopus 로고
    • Least absolute regression network analysis of the murine osteoblast differentiation network
    • 10.1093/bioinformatics/bti816, 16332709
    • van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT. Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22:477-484. 10.1093/bioinformatics/bti816, 16332709.
    • (2006) Bioinformatics , vol.22 , pp. 477-484
    • van Someren, E.P.1    Vaes, B.L.T.2    Steegenga, W.T.3    Sijbers, A.M.4    Dechering, K.J.5    Reinders, M.J.T.6
  • 35
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • Wehrli AV, Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology 2007, 6:15.
    • (2007) Statistical Applications in Genetics and Molecular Biology , vol.6 , pp. 15
    • Wehrli, A.V.1    Husmeier, D.2
  • 37
    • 0002465693 scopus 로고
    • A spline least squares method for numerical parameter estimation in differential equations
    • Varah JM. A spline least squares method for numerical parameter estimation in differential equations. SIAM Journal on Scientific & Statistical Computing 1982, 3:28-46.
    • (1982) SIAM Journal on Scientific & Statistical Computing , vol.3 , pp. 28-46
    • Varah, J.M.1
  • 39
    • 34548060998 scopus 로고    scopus 로고
    • Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Data
    • Berlin: Springer, Hochreiter S, Wagner R
    • Radde N, Kaderali L. Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Data. BIRD, Volume 4414 of Lecture Notes in Computer Science 2007, 1-15. Berlin: Springer, Hochreiter S, Wagner R., http://www.springerlink.com/content/k69807u72u21458u/?p=9f516592e7b44869 91d1928407f55d48&pi=1
    • (2007) BIRD, Volume 4414 of Lecture Notes in Computer Science , pp. 1-15
    • Radde, N.1    Kaderali, L.2
  • 41
    • 54249116230 scopus 로고
    • Genetic regulatory mechanisms in the synthesis of proteins
    • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 1961, 3:318-356.
    • (1961) Journal of Molecular Biology , vol.3 , pp. 318-356
    • Jacob, F.1    Monod, J.2
  • 42
    • 0014974440 scopus 로고
    • On the Relation between Effector Concentration and the Rate of Induced Enzyme Synthesis
    • 10.1016/S0006-3495(71)86192-1, 1484024, 4923389
    • Yagil G, Yagil E. On the Relation between Effector Concentration and the Rate of Induced Enzyme Synthesis. Biophysical Journal 1971, 11:11-27. 10.1016/S0006-3495(71)86192-1, 1484024, 4923389.
    • (1971) Biophysical Journal , vol.11 , pp. 11-27
    • Yagil, G.1    Yagil, E.2
  • 43
    • 0030986188 scopus 로고    scopus 로고
    • The hardwiring of development: organization and function of genomic regulatory systems
    • Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development 1997, 124:1851-1864.
    • (1997) Development , vol.124 , pp. 1851-1864
    • Arnone, M.I.1    Davidson, E.H.2
  • 44
    • 34547234238 scopus 로고    scopus 로고
    • Support vector machines with adaptive Lq penalty
    • Liu Y, Zhang HH, Park C, Ahn J. Support vector machines with adaptive Lq penalty. Comput Stat Data Anal 2007, 51(12):6380-6394.
    • (2007) Comput Stat Data Anal , vol.51 , Issue.12 , pp. 6380-6394
    • Liu, Y.1    Zhang, H.H.2    Park, C.3    Ahn, J.4
  • 45
    • 33745605205 scopus 로고    scopus 로고
    • CASPAR: A Hierarchical Bayesian Approach to predict Survival Times in Cancer from Gene Expression Data
    • 10.1093/bioinformatics/btl103, 16554338
    • Kaderali L, Zander T, Faigle U, Wolf J, Schultze JL, Schrader R. CASPAR: A Hierarchical Bayesian Approach to predict Survival Times in Cancer from Gene Expression Data. Bioinformatics 2006, 22:1495-1502. 10.1093/bioinformatics/btl103, 16554338.
    • (2006) Bioinformatics , vol.22 , pp. 1495-1502
    • Kaderali, L.1    Zander, T.2    Faigle, U.3    Wolf, J.4    Schultze, J.L.5    Schrader, R.6
  • 49
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 50
    • 67349095642 scopus 로고    scopus 로고
    • Inference of an oscillating model for the yeast cell cycle
    • Radde N, Kaderali L. Inference of an oscillating model for the yeast cell cycle. Discrete Applied Mathematics 2009, 157(10):2285-2295.
    • (2009) Discrete Applied Mathematics , vol.157 , Issue.10 , pp. 2285-2295
    • Radde, N.1    Kaderali, L.2
  • 51
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on Reverse Engineering Assessment and Methods: The DREAM of high throughput pathway inference
    • Annals of the New York Academy of Sciences
    • Stolovitzky G, Monroe D, Califano A. Dialogue on Reverse Engineering Assessment and Methods: The DREAM of high throughput pathway inference. 2007, 1115:1-22. Annals of the New York Academy of Sciences.
    • (2007) , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 53
    • 84888281706 scopus 로고    scopus 로고
    • DREAM2 Challenge Scoring Methodology
    • DREAM2 Challenge Scoring Methodology. , http://wiki.c2b2.columbia.edu/dream/results/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.