메뉴 건너뛰기




Volumn 47, Issue , 2015, Pages 168-181

Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory

Author keywords

Activity theory; CSCL; Educational data mining; Genetic Programming; Learning analytics; Prediction

Indexed keywords

ACTIVITY COEFFICIENTS; ALGORITHMS; DATA HANDLING; DATA MINING; EDUCATION; EDUCATION COMPUTING; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; PROBLEM SOLVING; SEMANTICS; SOCIAL NETWORKING (ONLINE); STUDENTS; TEACHING;

EID: 84924252472     PISSN: 07475632     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chb.2014.09.034     Document Type: Article
Times cited : (237)

References (76)
  • 2
    • 84892909980 scopus 로고    scopus 로고
    • Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning
    • Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García, Á. (2013). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior.
    • (2013) Computers in Human Behavior
    • Agudo-Peregrina, A.F.1
  • 3
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • R.S.J.D. Baker, and K. Yacef The state of educational data mining in 2009: A review and future visions Journal of Educational Data Mining 1 1 2009 3 17
    • (2009) Journal of Educational Data Mining , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.S.J.D.1    Yacef, K.2
  • 4
    • 0042566516 scopus 로고    scopus 로고
    • Using activity theory to understand the systemic tensions characterizing a technology-rich introductory astronomy course
    • S.A. Barab, M. Barnett, L. Yamagata-Lynch, K. Squire, and T. Keating Using activity theory to understand the systemic tensions characterizing a technology-rich introductory astronomy course Mind, Culture, and Activity 9 2 2002 76 107
    • (2002) Mind, Culture, and Activity , vol.9 , Issue.2 , pp. 76-107
    • Barab, S.A.1    Barnett, M.2    Yamagata-Lynch, L.3    Squire, K.4    Keating, T.5
  • 6
    • 34249865396 scopus 로고    scopus 로고
    • An activity theory perspective on student-reported contradictions in international telecollaboration
    • O.K. Basharina An activity theory perspective on student-reported contradictions in international telecollaboration Language Learning & Technology 11 2 2007 82 103
    • (2007) Language Learning & Technology , vol.11 , Issue.2 , pp. 82-103
    • Basharina, O.K.1
  • 7
    • 84888056723 scopus 로고    scopus 로고
    • A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications
    • D. Bernardo, H. Hagras, and E. Tsang A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications Soft Computing 17 12 2013 2185 2201
    • (2013) Soft Computing , vol.17 , Issue.12 , pp. 2185-2201
    • Bernardo, D.1    Hagras, H.2    Tsang, E.3
  • 11
    • 77954587923 scopus 로고    scopus 로고
    • Solving classification problems using genetic programming algorithms on GPUs
    • Springer, Berlin Heidelberg
    • Cano, A., Zafra, A., & Ventura, S. (2010). Solving classification problems using genetic programming algorithms on GPUs. In Hybrid Artificial Intelligence Systems (pp. 17-26). Springer, Berlin Heidelberg.
    • (2010) Hybrid Artificial Intelligence Systems , pp. 17-26
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 12
    • 84877703416 scopus 로고    scopus 로고
    • An interpretable classification rule mining algorithm
    • A. Cano, A. Zafra, and S. Ventura An interpretable classification rule mining algorithm Information Sciences 240 2013 1 20
    • (2013) Information Sciences , vol.240 , pp. 1-20
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 13
    • 84857472114 scopus 로고    scopus 로고
    • Predicting correctness of problem solving from low-level log data in intelligent tutoring systems
    • Cetintas, S., Si, L., Xin, Y. P., & Hord, C. (2009). Predicting correctness of problem solving from low-level log data in intelligent tutoring systems. In EDM (pp. 230-239).
    • (2009) EDM , pp. 230-239
    • Cetintas, S.1    Si, L.2    Xin, Y.P.3    Hord, C.4
  • 14
    • 38449115187 scopus 로고    scopus 로고
    • Reducing high-dimensional data by principal component analysis vs. Random projection for nearest neighbor classification
    • Deegalla, S., & Bostrom, H. (2006). Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In International conference on machine learning and applications (pp. 245-250).
    • (2006) International Conference on Machine Learning and Applications , pp. 245-250
    • Deegalla, S.1    Bostrom, H.2
  • 15
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 29 2-3 1997 103 130
    • (1997) Machine Learning , vol.29 , Issue.23 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 16
    • 0002131507 scopus 로고    scopus 로고
    • Activity theory and individual and social transformation
    • Y. Engeström Activity theory and individual and social transformation Perspectives on Activity Theory 1999 19 38
    • (1999) Perspectives on Activity Theory , pp. 19-38
    • Engeström, Y.1
  • 21
    • 84868201479 scopus 로고    scopus 로고
    • The state of learning analytics in 2012: A review and future challenges
    • 2012
    • Ferguson, R. (2012). The state of learning analytics in 2012: A review and future challenges. Knowledge Media Institute, Technical Report KMI-2012 (Vol. 1), 2012.
    • (2012) Knowledge Media Institute, Technical Report KMI-2012 , vol.1
    • Ferguson, R.1
  • 29
    • 84890313563 scopus 로고    scopus 로고
    • Creating a model of the dynamics of socio-technical groups
    • Retrieved
    • S. Goggins, G. Valetto, C. Mascaro, and K. Blincoe Creating a model of the dynamics of socio-technical groups User Modeling and User-Adapted Interaction 23 4 2013 345 379 Retrieved http://link.springer.com/article/10.1007/s11257-012-9122-3
    • (2013) User Modeling and User-Adapted Interaction , vol.23 , Issue.4 , pp. 345-379
    • Goggins, S.1    Valetto, G.2    Mascaro, C.3    Blincoe, K.4
  • 30
    • 34250092221 scopus 로고
    • Genetic algorithms and machine learning
    • D.E. Goldberg, and J.H. Holland Genetic algorithms and machine learning Machine Learning 3 2 1988 95 99
    • (1988) Machine Learning , vol.3 , Issue.2 , pp. 95-99
    • Goldberg, D.E.1    Holland, J.H.2
  • 31
    • 77955280461 scopus 로고    scopus 로고
    • Measurement and assessment in computer-supported collaborative learning
    • C.L. Gress, M. Fior, A.F. Hadwin, and P.H. Winne Measurement and assessment in computer-supported collaborative learning Computers in Human Behavior 26 5 2010 806 814
    • (2010) Computers in Human Behavior , vol.26 , Issue.5 , pp. 806-814
    • Gress, C.L.1    Fior, M.2    Hadwin, A.F.3    Winne, P.H.4
  • 33
    • 0036271506 scopus 로고    scopus 로고
    • Activity theory and distributed cognition: Or what does CSCW need to DO with theories?
    • C.A. Halverson Activity theory and distributed cognition: Or what does CSCW need to DO with theories? Computer Supported Cooperative Work (CSCW) 11 1-2 2002 243 267
    • (2002) Computer Supported Cooperative Work (CSCW) , vol.11 , Issue.12 , pp. 243-267
    • Halverson, C.A.1
  • 34
    • 33746339502 scopus 로고    scopus 로고
    • Comparison of machine learning methods for intelligent tutoring systems
    • Springer, Berlin, Heidelberg
    • Hämäläinen, W., & Vinni, M. (2006). Comparison of machine learning methods for intelligent tutoring systems. In Intelligent tutoring systems (pp. 525-534). Springer, Berlin, Heidelberg.
    • (2006) Intelligent Tutoring Systems , pp. 525-534
    • Hämäläinen, W.1
  • 35
    • 0141647572 scopus 로고
    • Classifiction
    • D. Michie, D. J. Spiegelhalter, & C. C. Taylor (Eds.) Ellis Horwood
    • Henery, R. J. (1994). Classifiction. In D. Michie, D. J. Spiegelhalter, & C. C. Taylor (Eds.), Machine Learning, Neural and Statistical Classification (pp. 6-16). Ellis Horwood.
    • (1994) Machine Learning, Neural and Statistical Classification , pp. 6-16
    • Henery, R.J.1
  • 38
    • 56249111935 scopus 로고    scopus 로고
    • A theory of online learning as online participation
    • S. Hrastinski A theory of online learning as online participation Computers & Education 52 1 2009 78 82
    • (2009) Computers & Education , vol.52 , Issue.1 , pp. 78-82
    • Hrastinski, S.1
  • 39
    • 79951515446 scopus 로고    scopus 로고
    • An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
    • J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models Decision Support Systems 51 1 2011 141 154
    • (2011) Decision Support Systems , vol.51 , Issue.1 , pp. 141-154
    • Huysmans, J.1    Dejaeger, K.2    Mues, C.3    Vanthienen, J.4    Baesens, B.5
  • 40
    • 78651252829 scopus 로고    scopus 로고
    • Predicting students' Academic Performance: Comparing artificial neural network, decision tree and linear regression
    • Ibrahim, Z., & Rusli, D. (2007). Predicting students' Academic Performance: Comparing artificial neural network, decision tree and linear regression. In Proceedings of the 21 Annual SAS Malaysia Forum, Kuala Lumpur, Malaysia (pp. 1-6).
    • (2007) Proceedings of the 21 Annual SAS Malaysia Forum, Kuala Lumpur, Malaysia , pp. 1-6
    • Ibrahim, Z.1    Rusli, D.2
  • 42
    • 0001290841 scopus 로고    scopus 로고
    • Glossary of terms
    • R. Kohavi, and F. Provost Glossary of terms Machine Learning 30 2-3 1998 271 274
    • (1998) Machine Learning , vol.30 , Issue.23 , pp. 271-274
    • Kohavi, R.1    Provost, F.2
  • 46
    • 0024521543 scopus 로고
    • A concordance correlation coefficient to evaluate reproducibility
    • I. Lawrence, and K. Lin A concordance correlation coefficient to evaluate reproducibility Biometrics 1989 255 268
    • (1989) Biometrics , pp. 255-268
    • Lawrence, I.1    Lin, K.2
  • 48
    • 0034268828 scopus 로고    scopus 로고
    • Two fast tree-creation algorithms for genetic programming
    • S. Luke Two fast tree-creation algorithms for genetic programming Evolutionary Computation IEEE Transactions on 4 3 2000 274 283
    • (2000) Evolutionary Computation IEEE Transactions on , vol.4 , Issue.3 , pp. 274-283
    • Luke, S.1
  • 49
    • 84876194131 scopus 로고    scopus 로고
    • Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
    • C. Márquez-Vera, A. Cano, C. Romero, and S. Ventura Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data Applied Intelligence 2013 1 16
    • (2013) Applied Intelligence , pp. 1-16
    • Márquez-Vera, C.1    Cano, A.2    Romero, C.3    Ventura, S.4
  • 51
    • 77950909628 scopus 로고    scopus 로고
    • Predictable failure of federal sanctions-driven accountability for school improvement - And why we may retain it anyway
    • H. Mintrop, and G.L. Sunderman Predictable failure of federal sanctions-driven accountability for school improvement - and why we may retain it anyway Educational Researcher 38 5 2009 353 364
    • (2009) Educational Researcher , vol.38 , Issue.5 , pp. 353-364
    • Mintrop, H.1    Sunderman, G.L.2
  • 55
    • 84864434804 scopus 로고    scopus 로고
    • Evolutionary algorithm for water storage forecasting response to climate change with small data sets: The Wolonghu Wetland, China
    • Q. Ni, L. Wang, B. Zheng, and M. Sivakumar Evolutionary algorithm for water storage forecasting response to climate change with small data sets: The Wolonghu Wetland, China Environmental Engineering Science 29 8 2012 814 820
    • (2012) Environmental Engineering Science , vol.29 , Issue.8 , pp. 814-820
    • Ni, Q.1    Wang, L.2    Zheng, B.3    Sivakumar, M.4
  • 56
    • 37249089762 scopus 로고    scopus 로고
    • The effect of model granularity on student performance prediction using Bayesian networks
    • Springer, Berlin Heidelberg
    • Pardos, Z. A., Heffernan, N. T., Anderson, B., & Heffernan, C. L. (2007). The effect of model granularity on student performance prediction using Bayesian networks. In User modeling 2007 (pp. 435-439). Springer, Berlin Heidelberg.
    • (2007) User Modeling 2007 , pp. 435-439
    • Pardos, Z.A.1    Heffernan, N.T.2    Anderson, B.3    Heffernan, C.L.4
  • 59
    • 77949601665 scopus 로고    scopus 로고
    • Data Mining Algorithms to Classify Students
    • Romero, C., Ventura, S., Espejo, P. G., & Hervás, C. (2008). Data Mining Algorithms to Classify Students. In EDM (pp. 8-17).
    • (2008) EDM , pp. 8-17
    • Romero, C.1
  • 60
    • 84880300450 scopus 로고    scopus 로고
    • Predicting students' final performance from participation in on-line discussion forums
    • C. Romero, M.I. López, J.M. Luna, and S. Ventura Predicting students' final performance from participation in on-line discussion forums Computers & Education 68 2013 458 472
    • (2013) Computers & Education , vol.68 , pp. 458-472
    • Romero, C.1    López, M.I.2    Luna, J.M.3    Ventura, S.4
  • 64
    • 84866244681 scopus 로고    scopus 로고
    • Mining educational data to improve students' performance: A case study
    • M.M.A. Tair, and A.M. El-Halees Mining educational data to improve students' performance: A case study International Journal of Information 2 2 2012
    • (2012) International Journal of Information , vol.2 , Issue.2
    • Tair, M.M.A.1    El-Halees, A.M.2
  • 65
    • 4043088578 scopus 로고    scopus 로고
    • What satisfies students? Mining student-opinion data with regression and decision tree analysis
    • E.H. Thomas, and N. Galambos What satisfies students? Mining student-opinion data with regression and decision tree analysis Research in Higher Education 45 3 2004 251 269
    • (2004) Research in Higher Education , vol.45 , Issue.3 , pp. 251-269
    • Thomas, E.H.1    Galambos, N.2
  • 66
    • 84933046441 scopus 로고    scopus 로고
    • Genetic Programming - Introduction, applications, theory and open issues
    • Springer, Berlin Heidelberg
    • Vanneschi, L., & Poli, R. (2012). Genetic Programming - introduction, applications, theory and open issues. In Handbook of natural computing (pp. 709-739). Springer, Berlin Heidelberg.
    • (2012) Handbook of Natural Computing , pp. 709-739
    • Vanneschi, L.1    Poli, R.2
  • 73
    • 84924230618 scopus 로고    scopus 로고
    • Group Learning assessment in CSCL: Developing a theory-informed analytics
    • (in press)
    • Xing, W. L., Wadholm, B., & Goggins, S. (2014). Group Learning assessment in CSCL: Developing a theory-informed analytics. Educational Technology & Society (in press).
    • (2014) Educational Technology & Society
    • Xing, W.L.1    Wadholm, B.2    Goggins, S.3
  • 75
    • 77958152418 scopus 로고    scopus 로고
    • Predicting student grades in learning management systems with multiple instance genetic programming
    • A. Zafra, and S. Ventura Predicting student grades in learning management systems with multiple instance genetic programming EDM 9 2009 309 319
    • (2009) EDM , vol.9 , pp. 309-319
    • Zafra, A.1    Ventura, S.2
  • 76
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: An ensemble method
    • Y. Zhang, and S. Bhattacharyya Genetic programming in classifying large-scale data: An ensemble method Information Sciences 163 1 2004 85 101
    • (2004) Information Sciences , vol.163 , Issue.1 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.