메뉴 건너뛰기




Volumn , Issue , 2010, Pages 94-126

Genetic programming for cross-release fault count predictions in large and complex software projects

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84856686810     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-61520-809-8.ch006     Document Type: Chapter
Times cited : (7)

References (117)
  • 5
    • 44849094143 scopus 로고    scopus 로고
    • Evolutionary computation at dow chemical
    • doi:10.1145/1181964.1181965
    • Arthur, K. (2006). Evolutionary computation at Dow Chemical. SIGEVOlution, 1(3), 4-9.doi:10.1145/1181964.1181965
    • (2006) SIGEVOlution , vol.1 , Issue.3 , pp. 4-9
    • Arthur, K.1
  • 6
    • 34548092926 scopus 로고    scopus 로고
    • Paper presented at the Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation
    • Arthur Karl, K., Guido, F. S., & Mark, E. K. (2007). Industrial evolutionary computing. Paper presented at the Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation.
    • (2007) Industrial Evolutionary Computing
    • Arthur Karl, K.1    Guido, F.S.2    Mark, E.K.3
  • 7
    • 0004013190 scopus 로고    scopus 로고
    • -Basic algorithms and operators: San Francisco: Taylor & Francis Group
    • Bäck, T., Fogel, D. B., & Michalewicz, Z. (2000). [-Basic algorithms and operators: San Francisco: Taylor & Francis Group.]. Evolutionary Computation, 1.
    • (2000) Evolutionary Computation , vol.1
    • Bäck, T.1    Fogel, D.B.2    Michalewicz, Z.3
  • 8
    • 85008047921 scopus 로고    scopus 로고
    • Software defect reduction top 10 list
    • Barry, B., & Victor, R. B. (2001). Software Defect Reduction Top 10 List. Computer, 34(1), 135-137.
    • (2001) Computer , vol.34 , Issue.1 , pp. 135-137
    • Barry, B.1    Victor, R.B.2
  • 11
    • 84899219888 scopus 로고    scopus 로고
    • Bugzilla homepage, (Last checked: October 2008). from
    • Bugzilla homepage. (Last checked: October 2008). from http://www.bugzilla.org
  • 12
    • 0035892550 scopus 로고    scopus 로고
    • Can genetic programming improve software effort estimation? A comparative evaluation
    • doi:10.1016/ S0950-5849(01)00192-6
    • Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort estimation? A comparative evaluation. Information and Software Technology, 43(14), 863-873. doi:10.1016/ S0950-5849(01)00192-6
    • (2001) Information and Software Technology , vol.43 , Issue.14 , pp. 863-873
    • Burgess, C.J.1    Lefley, M.2
  • 14
    • 33846250731 scopus 로고    scopus 로고
    • Fuzzy methods in software reliability modeling
    • In, Amsterdam: Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers
    • Cai, K.-Y. (1996). Fuzzy methods in software reliability modeling. In Introduction to fuzzy reliability. Amsterdam: Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers.
    • (1996) Introduction to Fuzzy Reliability
    • Cai, K.-Y.1
  • 15
    • 0025796511 scopus 로고
    • A critical review on software reliability modeling
    • doi:10.1016/0951-8320(91)90009-V
    • Cai, K.-Y., Wen, C., & Zhang, M. (1991). A critical review on software reliability modeling. Reliability Engineering & System Safety, 32(3), 357-371.doi:10.1016/0951-8320(91)90009-V
    • (1991) Reliability Engineering & System Safety , vol.32 , Issue.3 , pp. 357-371
    • Cai, K.-Y.1    Wen, C.2    Zhang, M.3
  • 16
    • 0027872114 scopus 로고
    • A novel approach to software reliability modeling
    • doi:10.1016/0026-2714(93)90066-8
    • Cai, K.-Y., Wen, C., & Zhang, M. (1993). A novel approach to software reliability modeling. Micro-electronics and Reliability, 33(15), 2265-2267.doi:10.1016/0026-2714(93)90066-8
    • (1993) Micro-electronics and Reliability , vol.33 , Issue.15 , pp. 2265-2267
    • Cai, K.-Y.1    Wen, C.2    Zhang, M.3
  • 17
    • 0034224993 scopus 로고    scopus 로고
    • An investigation of machine learning based prediction systems
    • doi:10.1016/S0164-1212(00)00005-4
    • Carolyn, M., Gada, K., Martin, L., Keith, P., Chris, S., & Martin, S. (2000). An investigation of machine learning based prediction systems. Journal of Systems and Software, 53(1), 23-29.doi:10.1016/S0164-1212(00)00005-4
    • (2000) Journal of Systems and Software , vol.53 , Issue.1 , pp. 23-29
    • Carolyn, M.1    Gada, K.2    Martin, L.3    Keith, P.4    Chris, S.5    Martin, S.6
  • 19
    • 34548611589 scopus 로고    scopus 로고
    • Exploring genetic programming and boosting techniques to model software reliability
    • Costa, E. O., de Souza, G. A., Pozo, A. T. R., & Vergilio, S. R. (2007). Exploring Genetic Programming and Boosting Techniques to Model Software Reliability. Reliability. IEEE Transactions on, 56(3), 422-434.
    • (2007) Reliability. IEEE Transactions on , vol.56 , Issue.3 , pp. 422-434
    • Costa, E.O.1    de Souza, G.A.2    Pozo, A.T.R.3    Vergilio, S.R.4
  • 21
    • 0036709435 scopus 로고    scopus 로고
    • An enhanced neural network technique for software risk analysis
    • doi:10.1109/TSE.2002.1033229
    • Donald, E. N. (2002). An Enhanced Neural Network Technique for Software Risk Analysis. IEEE Transactions on Software Engineering, 28(9), 904-912.doi:10.1109/TSE.2002.1033229
    • (2002) IEEE Transactions on Software Engineering , vol.28 , Issue.9 , pp. 904-912
    • Donald, E.N.1
  • 24
    • 22944473604 scopus 로고    scopus 로고
    • Predicting the location and number of faults in large software systems
    • doi:10.1109/TSE.2005.49
    • Elaine, J. W., & Thomas, J. Ostrand & Robert, M. B. (2005). Predicting the Location and Number of Faults in Large Software Systems. IEEE Transactions on Software Engineering, 31(4), 340-355.doi:10.1109/TSE.2005.49
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.4 , pp. 340-355
    • Elaine, J.W.1    Thomas J.O.Robert, M.B.2
  • 25
    • 84899348328 scopus 로고    scopus 로고
    • Last checked March, Retrieved from
    • Farr, W. (Last checked March 2009). SMERFS3 homepage. Retrieved from http://www.slingcode.com/smerfs/downloads/
    • (2009) SMERFS3 Homepage
    • Farr, W.1
  • 26
    • 0036041633 scopus 로고    scopus 로고
    • Paper presented at the Proceedings of the 24th International Conference on Software Engineering
    • Giovanni, D., & Mauro, P. (2002). An empirical evaluation of fault-proneness models. Paper presented at the Proceedings of the 24th International Conference on Software Engineering.
    • (2002) An Empirical Evaluation of Fault-proneness Models
    • Giovanni, D.1    Mauro, P.2
  • 27
    • 0022252694 scopus 로고
    • Software reliability models: Assumptions, limitations, and applicability
    • Goel, A. L. (1985). Software Reliability Models: Assumptions, Limitations, and Applicability. Software Engineering. IEEE Transactions on, SE-11(12), 1411-1423.
    • (1985) Software Engineering. IEEE Transactions On, SE-11(12) , pp. 1411-1423
    • Goel, A.L.1
  • 28
    • 0018505572 scopus 로고
    • Time dependent error detection rate model for software reliability and other performance measures
    • doi:10.1109/TR.1979.5220566
    • Goel, A. L., & Okumoto, K. (1979). Time dependent error detection rate model for software reliability and other performance measures. IEEE Transactions on Reliability, R-28(3), 206-211.doi:10.1109/TR.1979.5220566
    • (1979) IEEE Transactions on Reliability , vol.R-28 , Issue.3 , pp. 206-211
    • Goel, A.L.1    Okumoto, K.2
  • 29
    • 0031170604 scopus 로고    scopus 로고
    • A comparison of techniques for developing predictive models of software metrics
    • doi:10.1016/ S0950-5849(96)00006-7
    • Gray, A. R., & MacDonell, S. G. (1997). A comparison of techniques for developing predictive models of software metrics. Information and Software Technology, 39(6), 425-437. doi:10.1016/ S0950-5849(96)00006-7
    • (1997) Information and Software Technology , vol.39 , Issue.6 , pp. 425-437
    • Gray, A.R.1    Macdonell, S.G.2
  • 30
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • UK, University of Southampton
    • Gunn, S. R. (1998). Support vector machines for classification and regression. School of electronics and computer science. UK: University of Southampton.
    • (1998) School of Electronics and Computer Science
    • Gunn, S.R.1
  • 31
    • 0742324133 scopus 로고    scopus 로고
    • A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data
    • doi:10.1016/S0925-2312(03)00385-0
    • Guo, P., & Lyu, M. R. (2004). A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data. Neurocomputing, 56, 101-121.doi:10.1016/S0925-2312(03)00385-0
    • (2004) Neurocomputing , vol.56 , pp. 101-121
    • Guo, P.1    Lyu, M.R.2
  • 32
    • 0242411523 scopus 로고    scopus 로고
    • A study of the connectionist models for software reliability prediction
    • (Oxford, England), doi:10.1016/S0898-1221(03)90117-9
    • Ho, S. L., Xie, M., & Goh, T. N. (2003). A study of the connectionist models for software reliability prediction. Computers & Mathematics with Applications (Oxford, England), 46(7), 1037-1045.doi:10.1016/S0898-1221(03)90117-9
    • (2003) Computers & Mathematics with Applications , vol.46 , Issue.7 , pp. 1037-1045
    • Ho, S.L.1    Xie, M.2    Goh, T.N.3
  • 34
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • doi:10.1371/journal.pmed.0020124
    • Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 696-701.doi:10.1371/journal.pmed.0020124
    • (2005) PLoS Medicine , vol.2 , Issue.8 , pp. 696-701
    • Ioannidis, J.P.A.1
  • 35
    • 0030288975 scopus 로고    scopus 로고
    • An integrated approach to test tracking and analysis
    • doi:10.1016/0164-1212(95)00092-5
    • Jeff, T. (1996). An integrated approach to test tracking and analysis. Journal of Systems and Software, 35(2), 127-140.doi:10.1016/0164-1212(95)00092-5
    • (1996) Journal of Systems and Software , vol.35 , Issue.2 , pp. 127-140
    • Jeff, T.1
  • 36
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • doi:10.1109/TSE.2007.256941
    • Jeremy, G., & Art, F. (2007). Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering, 33(1), 2-13.doi:10.1109/TSE.2007.256941
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.1 , pp. 2-13
    • Jeremy, G.1    Art, F.2
  • 37
    • 0034291123 scopus 로고    scopus 로고
    • A validation of the component-based method for software size estimation
    • Jos, & Javier, D&
    • Jos, & Javier, D. (2000). A validation of the component-based method for software size estimation. IEEE Trans. Softw. Eng., 26(10), 1006-1021.
    • (2000) IEEE Trans. Softw. Eng , vol.26 , Issue.10 , pp. 1006-1021
  • 40
    • 0035881008 scopus 로고    scopus 로고
    • On the neural network approach in software reliability modeling
    • doi:10.1016/ S0164-1212(01)00027-9
    • Kai-Yuan, C., Lin, C., Wei-Dong, W., Zhou-Yi, Y., & David, Z. (2001). On the neural network approach in software reliability modeling. Journal of Systems and Software, 58(1), 47-62. doi:10.1016/ S0164-1212(01)00027-9
    • (2001) Journal of Systems and Software , vol.58 , Issue.1 , pp. 47-62
    • Kai-Yuan, C.1    Lin, C.2    Wei-Dong, W.3    Zhou-Yi, Y.4    David, Z.5
  • 44
    • 34250330312 scopus 로고    scopus 로고
    • A comprehensive empirical study of count models for software fault prediction
    • doi:10.1109/ TR.2007.896761
    • Kehan, G., & Khoshgoftaar, T. M. (2007). A Comprehensive Empirical Study of Count Models for Software Fault Prediction. IEEE Transactions on Reliability, 56(2), 223-236. doi:10.1109/ TR.2007.896761
    • (2007) IEEE Transactions on Reliability , vol.56 , Issue.2 , pp. 223-236
    • Kehan, G.1    Khoshgoftaar, T.M.2
  • 45
    • 0031192278 scopus 로고    scopus 로고
    • Application of neural networks to software quality modeling of a very large tele-communications system
    • doi:10.1109/72.595888
    • Khoshgoftaar, T., Allen, E., Hudepohl, J., & Aud, S. (1997). Application of neural networks to software quality modeling of a very large tele-communications system. IEEE Transactions on Neural Networks, 8(4).doi:10.1109/72.595888
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4
    • Khoshgoftaar, T.1    Allen, E.2    Hudepohl, J.3    Aud, S.4
  • 48
    • 0042767590 scopus 로고    scopus 로고
    • Fault prediction modeling for software quality estimation: Comparing commonly used techniques
    • doi:10.1023/A:1024424811345
    • Khoshgoftaar, T. M., & Seliya, N. (2003). Fault Prediction Modeling for Software Quality Estimation: Comparing Commonly Used Techniques. Empirical Software Engineering, 8(3), 255-283. doi:10.1023/A:1024424811345
    • (2003) Empirical Software Engineering , vol.8 , Issue.3 , pp. 255-283
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 49
    • 0030246526 scopus 로고    scopus 로고
    • Using neural networks to predict software faults during testing
    • doi:10.1109/24.537016
    • Khoshgoftaar, T. M., & Szabo, R. M. (1996). Using neural networks to predict software faults during testing. IEEE Transactions on Reliability, 45(3), 456-462.doi:10.1109/24.537016
    • (1996) IEEE Transactions on Reliability , vol.45 , Issue.3 , pp. 456-462
    • Khoshgoftaar, T.M.1    Szabo, R.M.2
  • 50
    • 34250335054 scopus 로고    scopus 로고
    • A MultiObjective software quality classification model using genetic programming
    • doi:10.1109/ TR.2007.896763
    • Khoshgoftaar, T. M., & Yi, L. (2007). A MultiObjective Software Quality Classification Model Using Genetic Programming. IEEE Transactions on Reliability, 56(2), 237-245. doi:10.1109/ TR.2007.896763
    • (2007) IEEE Transactions on Reliability , vol.56 , Issue.2 , pp. 237-245
    • Khoshgoftaar, T.M.1    Yi, L.2
  • 55
    • 65549161963 scopus 로고    scopus 로고
    • Published via http://lulu.com and freely available at
    • Langdon, W. B. (2008). A Field Guide to Genetic Programing. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk
    • (2008) A Field Guide to Genetic Programing
    • Langdon, W.B.1
  • 56
    • 0025791270 scopus 로고
    • Introduction to artificial neural systems for pattern recognition
    • doi:10.1016/0305-0548(91)90091-5
    • Laura Ignizio, B. (1991). Introduction to artificial neural systems for pattern recognition. Computers & Operations Research, 18(2), 211-220.doi:10.1016/0305-0548(91)90091-5
    • (1991) Computers & Operations Research , vol.18 , Issue.2 , pp. 211-220
    • Laura Ignizio, B.1
  • 58
    • 38049090618 scopus 로고    scopus 로고
    • Paper presented at the Proceedings of First IEEE International Conference on Cognitive Informatics
    • Leung, H., & Varadan, V. (2002). System modeling and design using genetic programming. Paper presented at the Proceedings of First IEEE International Conference on Cognitive Informatics.
    • (2002) System Modeling and Design Using Genetic Programming
    • Leung, H.1    Varadan, V.2
  • 60
    • 0027702759 scopus 로고
    • Developing interpretable models with optimized set reduction for identifying HighRisk software components
    • doi:10.1109/32.256851
    • Lionel, C. B., Victor, R. B., & Christopher, J. H. (1993). Developing Interpretable Models with Optimized set Reduction for Identifying HighRisk Software Components. IEEE Transactions on Software Engineering, 19(11), 1028-1044.doi:10.1109/32.256851
    • (1993) IEEE Transactions on Software Engineering , vol.19 , Issue.11 , pp. 1028-1044
    • Lionel, C.B.1    Victor, R.B.2    Christopher, J.H.3
  • 61
    • 0026944407 scopus 로고
    • A pattern recognition approach for software engineering data analysis
    • doi:10.1109/32.177363
    • Lionel, C. B., Victor, R. B., & William, M. T. (1992). A Pattern Recognition Approach for Software Engineering Data Analysis. IEEE Transactions on Software Engineering, 18(11), 931-942.doi:10.1109/32.177363
    • (1992) IEEE Transactions on Software Engineering , vol.18 , Issue.11 , pp. 931-942
    • Lionel, C.B.1    Victor, R.B.2    William, M.T.3
  • 62
    • 0036649954 scopus 로고    scopus 로고
    • Assessing the applicability of fault-proneness models across object-oriented software projects
    • doi:10.1109/TSE.2002.1019484
    • Lionel, C. B., Walcelio, L. M., & Wust, J. (2002). Assessing the applicability of fault-proneness models across object-oriented software projects. IEEE Transactions on Software Engineering, 28(7), 706-720.doi:10.1109/TSE.2002.1019484
    • (2002) IEEE Transactions on Software Engineering , vol.28 , Issue.7 , pp. 706-720
    • Lionel, C.B.1    Walcelio, L.M.2    Wust, J.3
  • 64
    • 0025568512 scopus 로고
    • Paper presented at the Proceedings of COMPSAC 90 Fourteenth Annual International Computer Software and Applications Conference
    • Malaiya, Y. K., Karunanithi, N., & Verma, P. (1990). Predictability measures for software reliability models. Paper presented at the Proceedings of COMPSAC 90 Fourteenth Annual International Computer Software and Applications Conference.
    • (1990) Predictability Measures for Software Reliability Models
    • Malaiya, Y.K.1    Karunanithi, N.2    Verma, P.3
  • 65
    • 0035506767 scopus 로고    scopus 로고
    • Comparing soft-ware prediction techniques using simulation
    • doi:10.1109/32.965341
    • Martin, S., & Gada, K. (2001). Comparing Soft-ware Prediction Techniques Using Simulation. IEEE Transactions on Software Engineering, 27(11), 1014-1022.doi:10.1109/32.965341
    • (2001) IEEE Transactions on Software Engineering , vol.27 , Issue.11 , pp. 1014-1022
    • Martin, S.1    Gada, K.2
  • 67
    • 84947659674 scopus 로고
    • Applying reliability models more effectively
    • doi:10.1109/52.143104
    • Michael, R. L., & Allen, N. (1992). Applying Reliability Models More Effectively. IEEE Software, 9(4), 43-52.doi:10.1109/52.143104
    • (1992) IEEE Software , vol.9 , Issue.4 , pp. 43-52
    • Michael, R.L.1    Allen, N.2
  • 69
    • 84947662956 scopus 로고
    • Using neural networks in reliability prediction
    • doi:10.1109/52.143107
    • Nachimuthu, K., Darrell, W., & Yashwant, K. M. (1992). Using Neural Networks in Reliability Prediction. IEEE Software, 9(4), 53-59.doi:10.1109/52.143107
    • (1992) IEEE Software , vol.9 , Issue.4 , pp. 53-59
    • Nachimuthu, K.1    Darrell, W.2    Yashwant, K.M.3
  • 70
    • 0026896343 scopus 로고
    • Prediction of software reliability using connectionist models
    • doi:10.1109/32.148475
    • Nachimuthu, K., Darrell, W., & Yashwant, K. M. (1992). Prediction of Software Reliability Using Connectionist Models. IEEE Transactions on Software Engineering, 18(7), 563-574.doi:10.1109/32.148475
    • (1992) IEEE Transactions on Software Engineering , vol.18 , Issue.7 , pp. 563-574
    • Nachimuthu, K.1    Darrell, W.2    Yashwant, K.M.3
  • 71
    • 0030684442 scopus 로고    scopus 로고
    • Early risk-management by identification of faultprone modules
    • doi:10.1023/A:1009757419320
    • Niclas, O., Ann Christin, E., & Mary, H. (1997). Early Risk-Management by Identification of Faultprone Modules. Empirical Software Engineering, 2(2), 166-173. doi:10.1023/A:1009757419320
    • (1997) Empirical Software Engineering , vol.2 , Issue.2 , pp. 166-173
    • Niclas, O.1    Ann Christin, E.2    Mary, H.3
  • 72
    • 33646161505 scopus 로고    scopus 로고
    • Predicting FaultProne software modules in telephone switches
    • doi:10.1109/32.553637
    • Niclas, O., & Hans, A. (1996). Predicting FaultProne Software Modules in Telephone Switches. IEEE Transactions on Software Engineering, 22(12), 886-894.doi:10.1109/32.553637
    • (1996) IEEE Transactions on Software Engineering , vol.22 , Issue.12 , pp. 886-894
    • Niclas, O.1    Hans, A.2
  • 73
    • 0002848467 scopus 로고    scopus 로고
    • Application of multivariate analysis for software fault prediction
    • doi:10.1023/A:1008844909795
    • Niclas, O., Ming, Z., & Mary, H. (1998). Application of multivariate analysis for software fault prediction. Software Quality Control, 7(1), 51-66. doi:10.1023/A:1008844909795
    • (1998) Software Quality Control , vol.7 , Issue.1 , pp. 51-66
    • Niclas, O.1    Ming, Z.2    Mary, H.3
  • 74
    • 4043052824 scopus 로고    scopus 로고
    • Estimation of software reliability with execution time model using the pattern mapping technique of artificial neural network
    • doi:10.1016/S0305-0548(03)00212-0
    • Nidhi, G., & Manu Pratap, S. (2005). Estimation of software reliability with execution time model using the pattern mapping technique of artificial neural network. Computers & Operations Research, 32(1), 187-199.doi:10.1016/S0305-0548(03)00212-0
    • (2005) Computers & Operations Research , vol.32 , Issue.1 , pp. 187-199
    • Nidhi, G.1    Manu Pratap, S.2
  • 75
    • 84899169691 scopus 로고    scopus 로고
    • Retrieved from
    • Nikora, A. P. (2009). CASRE homepage. Retrieved from http://www.openchannelfoundation.org/projects/CASRE_3.0
    • (2009) CASRE Homepage
    • Nikora, A.P.1
  • 77
    • 84899363524 scopus 로고    scopus 로고
    • Last checked November, Retrieved from
    • Palu, S. (Last checked November 2008). Instance-based learning: A Java implementation. Retrieved from http://www.developer.com/java/other/article.php/10936_1491651_1
    • (2008) Instance-based Learning: A Java Implementation
    • Palu, S.1
  • 79
    • 40049088101 scopus 로고    scopus 로고
    • Software reliability prediction by soft computing techniques
    • doi:10.1016/j.jss.2007.05.005
    • Raj Kiran, N., & Ravi, V. (2008). Software reliability prediction by soft computing techniques. Journal of Systems and Software, 81(4), 576-583.doi:10.1016/j.jss.2007.05.005
    • (2008) Journal of Systems and Software , vol.81 , Issue.4 , pp. 576-583
    • Raj Kiran, N.1    Ravi, V.2
  • 81
    • 0037881839 scopus 로고    scopus 로고
    • Software quality analysis with the use of computational intelligence
    • doi:10.1016/S0950-5849(03)00012-0
    • Reformat, M., Pedrycz, W., & Pizzi, N. J. (2003). Software quality analysis with the use of computational intelligence. Information and Software Technology, 45(7), 405-417.doi:10.1016/S0950-5849(03)00012-0
    • (2003) Information and Software Technology , vol.45 , Issue.7 , pp. 405-417
    • Reformat, M.1    Pedrycz, W.2    Pizzi, N.J.3
  • 83
    • 0002321638 scopus 로고    scopus 로고
    • Techniques for prediction analysis and recalibration
    • In, New York: McGraw-Hill, Inc
    • Sarah, B., & Bev, L. (1996). Techniques for prediction analysis and recalibration. In Handbook of software reliability engineering (pp. 119-166). New York: McGraw-Hill, Inc.
    • (1996) Handbook of Software Reliability Engineering , pp. 119-166
    • Sarah, B.1    Bev, L.2
  • 84
    • 33750594458 scopus 로고    scopus 로고
    • A comparison of bloat control methods for genetic programming
    • doi:10.1162/evco.2006.14.3.309
    • Sean, L., & Liviu, P. (2006). A comparison of bloat control methods for genetic programming. Evolutionary Computation, 14(3), 309-344.doi:10.1162/evco.2006.14.3.309
    • (2006) Evolutionary Computation , vol.14 , Issue.3 , pp. 309-344
    • Sean, L.1    Liviu, P.2
  • 85
    • 0034314869 scopus 로고    scopus 로고
    • On building prediction systems for software engineers
    • doi:10.1023/A:1026582314146
    • Shepperd, M., Cartwright, M., & Kadoda, G. (2000). On Building Prediction Systems for Software Engineers. Empirical Software Engineering, 5(3), 175-182. doi:10.1023/A:1026582314146
    • (2000) Empirical Software Engineering , vol.5 , Issue.3 , pp. 175-182
    • Shepperd, M.1    Cartwright, M.2    Kadoda, G.3
  • 87
    • 0242706561 scopus 로고    scopus 로고
    • Comparison of software-reliabil-ity-growth predictions: Neural networks vs para-metric-recalibration
    • doi:10.1109/24.799900
    • Sitte, R. (1999). Comparison of software-reliabil-ity-growth predictions: neural networks vs para-metric-recalibration. IEEE Transactions on Reliability, 48(3), 285-291.doi:10.1109/24.799900
    • (1999) IEEE Transactions on Reliability , vol.48 , Issue.3 , pp. 285-291
    • Sitte, R.1
  • 88
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • doi:10.1023/ B:STCO.0000035301.49549.88
    • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. doi:10.1023/ B:STCO.0000035301.49549.88
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 89
    • 0037117665 scopus 로고    scopus 로고
    • Empirical evaluation of a fuzzy logic-based software quality prediction model
    • doi:10.1016/S0165-0114(01)00128-2
    • So, S. S., Cha, S. D., & Kwon, Y. R. (2002). Empirical evaluation of a fuzzy logic-based software quality prediction model. Fuzzy Sets and Systems, 127(2), 199-208.doi:10.1016/S0165-0114(01)00128-2
    • (2002) Fuzzy Sets and Systems , vol.127 , Issue.2 , pp. 199-208
    • So, S.S.1    Cha, S.D.2    Kwon, Y.R.3
  • 90
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • doi:10.1109/TSE.2008.35
    • Stefan, L., Bart, B., Christophe, M., & Swantje, P. (2008). Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Engineering, 34(4), 485-496.doi:10.1109/TSE.2008.35
    • (2008) IEEE Transactions on Software Engineering , vol.34 , Issue.4 , pp. 485-496
    • Stefan, L.1    Bart, B.2    Christophe, M.3    Swantje, P.4
  • 91
    • 0036891786 scopus 로고    scopus 로고
    • An empirical method for selecting software reliability growth models
    • doi:10.1023/A:1020515105175
    • Stringfellow, C., & Andrews, A. A. (2002). An Empirical Method for Selecting Software Reliability Growth Models. Empirical Software Engineering, 7(4), 319-343. doi:10.1023/A:1020515105175
    • (2002) Empirical Software Engineering , vol.7 , Issue.4 , pp. 319-343
    • Stringfellow, C.1    Andrews, A.A.2
  • 93
    • 0033272579 scopus 로고    scopus 로고
    • Optimal software release scheduling based on artificial neural networks
    • Tadashi, D., Yasuhiko, N., & Shunji, O. (1999). Optimal software release scheduling based on artificial neural networks. Annals of Software Engineering, 8(1-4), 167-185.
    • (1999) Annals of Software Engineering , vol.8 , Issue.1-4 , pp. 167-185
    • Tadashi, D.1    Yasuhiko, N.2    Shunji, O.3
  • 95
    • 0026943850 scopus 로고
    • Predictive modeling techniques of software quality from software measures
    • doi:10.1109/32.177367
    • Taghi, M. K., John, C. M., Bibhuti, B. B., & Gary, D. R. (1992). Predictive Modeling Techniques of Software Quality from Software Measures. IEEE Transactions on Software Engineering, 18(11), 979-987.doi:10.1109/32.177367
    • (1992) IEEE Transactions on Software Engineering , vol.18 , Issue.11 , pp. 979-987
    • Taghi, M.K.1    John, C.M.2    Bibhuti, B.B.3    Gary, D.R.4
  • 97
    • 33746864881 scopus 로고    scopus 로고
    • An empirical study of predicting software faults with case-based reasoning
    • Taghi, M. K., Naeem, S., & Nandini, S. (2006). An empirical study of predicting software faults with case-based reasoning. Software Quality Control, 14(2), 85-111.
    • (2006) Software Quality Control , vol.14 , Issue.2 , pp. 85-111
    • Taghi, M.K.1    Naeem, S.2    Nandini, S.3
  • 99
  • 100
    • 16544369055 scopus 로고    scopus 로고
    • Software reliability prediction using recurrent neural network with bayesian regularization
    • doi:10.1142/S0129065704001966
    • Tian, L., & Noore, A. (2004). Software reliability prediction using recurrent neural network with Bayesian regularization. International Journal of Neural Systems, 14(3), 165-174. doi:10.1142/S0129065704001966
    • (2004) International Journal of Neural Systems , vol.14 , Issue.3 , pp. 165-174
    • Tian, L.1    Noore, A.2
  • 101
    • 23744506841 scopus 로고    scopus 로고
    • Dynamic software reliability prediction: An approach based on support vector machines
    • doi:10.1142/S0218539305001847
    • Tian, L., & Noore, A. (2005). Dynamic software reliability prediction: An approach based on Support Vector Machines. International Journal of Reliability Quality and Safety Engineering, 12(4), 309-321.doi:10.1142/S0218539305001847
    • (2005) International Journal of Reliability Quality and Safety Engineering , vol.12 , Issue.4 , pp. 309-321
    • Tian, L.1    Noore, A.2
  • 103
    • 18144413934 scopus 로고    scopus 로고
    • On-line prediction of software reliability using an evolutionary connectionist model
    • Tian, L., & Noore, A. (2005). On-line prediction of software reliability using an evolutionary connectionist model. Journal of Systems and Software, 77(22), 173-180.
    • (2005) Journal of Systems and Software , vol.77 , Issue.22 , pp. 173-180
    • Tian, L.1    Noore, A.2
  • 104
    • 33845601673 scopus 로고    scopus 로고
    • Computational intelligence methods in software reliability prediction
    • doi:10.1007/978-3-540-37368-1_12
    • Tian, L., & Noore, A. (2007). Computational intelligence methods in software reliability prediction. Computational Intelligence in Reliability Engineering, 39, 375-398. doi:10.1007/978-3-540-37368-1_12
    • (2007) Computational Intelligence in Reliability Engineering , vol.39 , pp. 375-398
    • Tian, L.1    Noore, A.2
  • 105
    • 30344485154 scopus 로고    scopus 로고
    • Empirical validation of object-oriented metrics on open source software for fault prediction
    • doi:10.1109/TSE.2005.112
    • Tibor, G., Rudolf, F., & Istvan, S. (2005). Empirical Validation of Object-Oriented Metrics on Open Source Software for Fault Prediction. IEEE Transactions on Software Engineering, 31(10), 897-910.doi:10.1109/TSE.2005.112
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.10 , pp. 897-910
    • Tibor, G.1    Rudolf, F.2    Istvan, S.3
  • 108
    • 0001622174 scopus 로고    scopus 로고
    • A validation of object-oriented design metrics as quality indicators
    • doi:10.1109/32.544352
    • Victor, R. B., & Lionel, C. B., Walc, & lio, L. M. (1996). A Validation of Object-Oriented Design Metrics as Quality Indicators. IEEE Transactions on Software Engineering, 22(10), 751-761.doi:10.1109/32.544352
    • (1996) IEEE Transactions on Software Engineering , vol.22 , Issue.10 , pp. 751-761
    • Victor, R.B.1    Lionel, C.B.2    Walc3    Lio, L.M.4
  • 112
    • 0030286540 scopus 로고    scopus 로고
    • Predicting software reliability
    • doi:10.1109/2.544240
    • Wood, A. (1996). Predicting software reliability. Computers, 29(11), 69-77.doi:10.1109/2.544240
    • (1996) Computers , vol.29 , Issue.11 , pp. 69-77
    • Wood, A.1
  • 113
    • 0021006179 scopus 로고
    • S-shaped reliability growth modeling for software error detection
    • doi:10.1109/TR.1983.5221735, R
    • Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software error detection. IEEE Transactions on Reliability, R-32(5), 475-478.doi:10.1109/TR.1983.5221735
    • (1983) IEEE Transactions on Reliability , vol.32 , Issue.5 , pp. 475-478
    • Yamada, S.1    Ohba, M.2    Osaki, S.3
  • 115
    • 0024073337 scopus 로고
    • An analysis of several software defect models
    • doi:10.1109/32.6170
    • Yu, T. J., Shen, V. Y., & Dunsmore, H. E. (1988). An Analysis of Several Software Defect Models. IEEE Transactions on Software Engineering, 14(9), 1261-1270.doi:10.1109/32.6170
    • (1988) IEEE Transactions on Software Engineering , vol.14 , Issue.9 , pp. 1261-1270
    • Yu, T.J.1    Shen, V.Y.2    Dunsmore, H.E.3
  • 116
    • 33847247249 scopus 로고    scopus 로고
    • Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models
    • doi:10.1016/j.jss.2006.06.017
    • Yu-Shen, S., & Chin-Yu, H. (2007). Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models. Journal of Systems and Software, 80(4), 606-615.doi:10.1016/j.jss.2006.06.017
    • (2007) Journal of Systems and Software , vol.80 , Issue.4 , pp. 606-615
    • Yu-Shen, S.1    Chin-Yu, H.2
  • 117
    • 3543055259 scopus 로고    scopus 로고
    • Machine learning and software engineering
    • doi:10.1023/A:1023760326768
    • Zhang, D., & Tsai, J. (2003). Machine Learning and Software Engineering. Software Quality Journal, 11(2), 87-119. doi:10.1023/A:1023760326768
    • (2003) Software Quality Journal , vol.11 , Issue.2 , pp. 87-119
    • Zhang, D.1    Tsai, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.