메뉴 건너뛰기




Volumn 31, Issue 4, 2003, Pages 2068-2081

Symmetrization approach to concentration inequalities for empirical processes

Author keywords

Concentration inequalities; Empirical processes

Indexed keywords


EID: 0347593390     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1068646378     Document Type: Article
Times cited : (38)

References (21)
  • 2
    • 0038373013 scopus 로고    scopus 로고
    • Concentration inequalities using the entropy method
    • BOUCHERON, S., LUGOSI, G. and MASSART, P. (2003). Concentration inequalities using the entropy method. Ann. Probab. 31 1583-1614.
    • (2003) Ann. Probab. , vol.31 , pp. 1583-1614
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 3
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its application to suprema of empirical processes
    • BOUSQUET, O. (2002). A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Acad. Sci. Paris Ser. 7334 495-500.
    • (2002) C. R. Acad. Sci. Paris Ser. , vol.7334 , pp. 495-500
    • Bousquet, O.1
  • 4
    • 0031514634 scopus 로고    scopus 로고
    • Information inequalities and concentration of measure
    • DEMBO, A. (1997). Information inequalities and concentration of measure. Ann. Probab. 25 527-539.
    • (1997) Ann. Probab. , vol.25 , pp. 527-539
    • Dembo, A.1
  • 6
    • 0039378037 scopus 로고    scopus 로고
    • When is the Student t-statistics asymptotically standard normal?
    • GINÉ, E., GÖTZE, F. and MASON, D. (1997). When is the Student t-statistics asymptotically standard normal? Ann. Probab. 25 1514-1531.
    • (1997) Ann. Probab. , vol.25 , pp. 1514-1531
    • Giné, E.1    Götze, F.2    Mason, D.3
  • 7
    • 0000996139 scopus 로고
    • Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension
    • HAUSSLER, D. (1995). Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A 69 217-232.
    • (1995) J. Combin. Theory Ser. A , vol.69 , pp. 217-232
    • Haussler, D.1
  • 8
    • 0038053924 scopus 로고    scopus 로고
    • Une inégalité de concentration a gauche pour les processus empiriques
    • KLEIN, T. (2002). Une inégalité de concentration a gauche pour les processus empiriques. C. R. Math. Acad. Sci. Paris 334 501-504.
    • (2002) C. R. Math. Acad. Sci. Paris , vol.334 , pp. 501-504
    • Klein, T.1
  • 9
    • 84996133877 scopus 로고    scopus 로고
    • On Talagrand's deviation inequalities for product measures
    • LEDOUX, M. (1996). On Talagrand's deviation inequalities for product measures. ESAIM: Probab. Statist. 1 63-87.
    • (1996) ESAIM: Probab. Statist. , vol.1 , pp. 63-87
    • Ledoux, M.1
  • 11
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in Talagrand's concentration inequalities for empirical processes
    • MASSART, P. (2000). About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 863-885.
    • (2000) Ann. Probab. , vol.28 , pp. 863-885
    • Massart, P.1
  • 12
    • 0347979483 scopus 로고    scopus 로고
    • A note on Talagrand's concentration inequality
    • PANCHENKO, D. (2001). A note on Talagrand's concentration inequality. Electron. Comm. Probab. 6 55-65.
    • (2001) Electron. Comm. Probab. , vol.6 , pp. 55-65
    • Panchenko, D.1
  • 13
    • 0347349284 scopus 로고    scopus 로고
    • Some extensions of an inequality of Vapnik and Chervonenkis
    • PANCHENKO, D. (2002). Some extensions of an inequality of Vapnik and Chervonenkis. Electron. Comm. Probab. 7 55-65.
    • (2002) Electron. Comm. Probab. , vol.7 , pp. 55-65
    • Panchenko, D.1
  • 14
    • 0040437027 scopus 로고    scopus 로고
    • Inégalités de concentration pour les processus empiriques de classes de parties
    • RIO, E. (2001). Inégalités de concentration pour les processus empiriques de classes de parties. Probab. Theory Related Fields 119 163-175.
    • (2001) Probab. Theory Related Fields , vol.119 , pp. 163-175
    • Rio, E.1
  • 15
    • 17044443944 scopus 로고    scopus 로고
    • A Bennett type inequality for maxima of empirical processes
    • RIO, E. (2002). A Bennett type inequality for maxima of empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 38 1053-1057.
    • (2002) Ann. Inst. H. Poincaré Probab. Statist. , vol.38 , pp. 1053-1057
    • Rio, E.1
  • 16
    • 0031531828 scopus 로고    scopus 로고
    • Self-normalized large deviations
    • SHAO, Q.-M. (1997). Self-normalized large deviations. Ann. Probab. 25 285-329.
    • (1997) Ann. Probab. , vol.25 , pp. 285-329
    • Shao, Q.-M.1
  • 17
    • 51249165477 scopus 로고
    • Concentration of measure and isoperimetric inequalities in product spaces
    • TALAGRAND, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. l'I.H.E.S. 81 73-205.
    • (1995) Publ. Math. l'I.H.E.S. , vol.81 , pp. 73-205
    • Talagrand, M.1
  • 18
    • 0030489977 scopus 로고    scopus 로고
    • New concentration inequalities in product spaces
    • TALAGRAND, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126 505-563.
    • (1996) Invent. Math. , vol.126 , pp. 505-563
    • Talagrand, M.1
  • 21
    • 0000915578 scopus 로고
    • On the uniform convergence of relative frequencies of event to their probabilities
    • VAPNIK, V. N. and CHERVONENKIS, A. YA. (1968). On the uniform convergence of relative frequencies of event to their probabilities. Soviet. Math. Dokl. 9 915-918.
    • (1968) Soviet. Math. Dokl. , vol.9 , pp. 915-918
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.