-
2
-
-
0034398141
-
Model selection for regression on a fixed design
-
BARAUD, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Related Fields 117 467-493.
-
(2000)
Probab. Theory Related Fields
, vol.117
, pp. 467-493
-
-
Baraud, Y.1
-
3
-
-
0002168687
-
Are Bayes rules consistent in information?
-
(T. Cover and B. Gopinath, eds.). Springer, Berlin
-
BARRON, A. (1987). Are Bayes rules consistent in information? In Open Problems in Communication and Computation (T. Cover and B. Gopinath, eds.) 85-91. Springer, Berlin.
-
(1987)
Open Problems in Communication and Computation
, pp. 85-91
-
-
Barron, A.1
-
4
-
-
0001347323
-
Complexity regularization with applications to artificial neural networks
-
(G. Roussas, ed.). Kluwer, Dordrecht
-
BARRON, A. (1991). Complexity regularization with applications to artificial neural networks. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.) 561-576. Kluwer, Dordrecht.
-
(1991)
Nonparametric Functional Estimation and Related Topics
, pp. 561-576
-
-
Barron, A.1
-
7
-
-
0030335054
-
A universally acceptable smoothing factor for kernel density estimates
-
DEVROYE, L. and LUGOSI, G. (1996). A universally acceptable smoothing factor for kernel density estimates. Ann. Statist. 24 2499-2512.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2499-2512
-
-
Devroye, L.1
Lugosi, G.2
-
8
-
-
0031319763
-
Nonasymptotic universal smoothing factors, kernel complexity and Yatracos classes
-
DEVROYE, L. and LUGOSI, G. (1997). Nonasymptotic universal smoothing factors, kernel complexity and Yatracos classes. Ann. Statist. 25 2626-2635.
-
(1997)
Ann. Statist.
, vol.25
, pp. 2626-2635
-
-
Devroye, L.1
Lugosi, G.2
-
9
-
-
0030371765
-
Some universal results on the behavior of increments of partial sums
-
EINMAHL, U. and MASON, D. (1996). Some universal results on the behavior of increments of partial sums. Ann. Probab. 24 1388-1407.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1388-1407
-
-
Einmahl, U.1
Mason, D.2
-
13
-
-
0009321484
-
On an exact constant for the Rosenthal inequality
-
IBRAGIMOV, R. and SHARAKHMETOV, SH. (1998). On an exact constant for the Rosenthal inequality. Theory Probab. Appl. 42 294-302.
-
(1998)
Theory Probab. Appl.
, vol.42
, pp. 294-302
-
-
Ibragimov, R.1
Sharakhmetov, Sh.2
-
14
-
-
0033234644
-
Adaptive model selection using empirical complexities
-
LUGOSI, G. and NOBEL, A. (1999). Adaptive model selection using empirical complexities. Ann. Statist. 27 1830-1864.
-
(1999)
Ann. Statist.
, vol.27
, pp. 1830-1864
-
-
Lugosi, G.1
Nobel, A.2
-
15
-
-
21144474350
-
Linear model selection by cross-validation
-
SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 486-494
-
-
Shao, J.1
-
16
-
-
0000709835
-
Estimating a regression function
-
VAN DE GEER, S. (1990). Estimating a regression function. Ann. Statist. 18 907-924.
-
(1990)
Ann. Statist.
, vol.18
, pp. 907-924
-
-
Van De Geer, S.1
-
18
-
-
0030335134
-
Consistency for the least squares estimator in nonparametric regression
-
VAN DE GEER, S. and WEGKAMP, M (1996). Consistency for the least squares estimator in nonparametric regression. Ann. Statist. 24 2513-2523.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2513-2523
-
-
Van De Geer, S.1
Wegkamp, M.2
-
20
-
-
0033445980
-
Quasi-universal bandwidth selection for kernel density estimators
-
WEGKAMP, M. H. (1999). Quasi-universal bandwidth selection for kernel density estimators. Canad. J. Statist. 27 409-420
-
(1999)
Canad. J. Statist.
, vol.27
, pp. 409-420
-
-
Wegkamp, M.H.1
-
21
-
-
1542573460
-
Adaptive regression by mixing
-
YANG, Y. (2001). Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 574-588.
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 574-588
-
-
Yang, Y.1
-
22
-
-
0033233737
-
Information-theoretic determination of minimax rates of convergence
-
YANG, Y. and BARRON, A. (1999). Information-theoretic determination of minimax rates of convergence. Ann. Statist. 27 1564 - 1599.
-
(1999)
Ann. Statist.
, vol.27
, pp. 1564-1599
-
-
Yang, Y.1
Barron, A.2
|