-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Christopher Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
3
-
-
84889281816
-
Elements of information theory
-
John Wiley & Sons, 1st edition
-
Thomas Cover and Joy Thomas. Elements of Information Theory. Series in Telecommunications. John Wiley & Sons, 1st edition, 1991.
-
(1991)
Series in Telecommunications
-
-
Cover, T.1
Thomas, J.2
-
5
-
-
0038891993
-
Sparse on-line Gaussian processes
-
Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation, 14:641-668, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
7
-
-
84898991622
-
Prom margin to sparsity
-
T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
-
Thore Graepel, Ralf Herbrich, and Robert Williamson. Prom margin to sparsity. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 210-216. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 210-216
-
-
Graepel, T.1
Herbrich, R.2
Williamson, R.3
-
9
-
-
0028132501
-
Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension
-
David Haussler, Michael Kearns, and Robert Schapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. Machine Learning, 14:83-113, 1994.
-
(1994)
Machine Learning
, vol.14
, pp. 83-113
-
-
Haussler, D.1
Kearns, M.2
Schapire, R.3
-
10
-
-
0031326925
-
Mutual information, metric entropy and cumulative relative entropy risk
-
David Haussler and Manfred Opper. Mutual information, metric entropy and cumulative relative entropy risk. Annals of Statistics, 25(6):2451-2492, 1997.
-
(1997)
Annals of Statistics
, vol.25
, Issue.6
, pp. 2451-2492
-
-
Haussler, D.1
Opper, M.2
-
12
-
-
84894167296
-
A PAC-Bayesian margin bound for linear classifiers: Why SVMs work
-
T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
-
Ralf Herbrich and Thore Graepel. A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 224-230. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 224-230
-
-
Herbrich, R.1
Graepel, T.2
-
13
-
-
0041995176
-
Algorithmic luckiness
-
T. Dietterich, S. Becker, and Z. Ghahramani, editors. MIT Press
-
Ralf Herbrich and Robert Williamson. Algorithmic luckiness. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 391-397. MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 391-397
-
-
Herbrich, R.1
Williamson, R.2
-
14
-
-
0004151494
-
-
Cambridge University Press, 1st edition
-
Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1st edition, 1985.
-
(1985)
Matrix Analysis
-
-
Horn, R.1
Johnson, C.2
-
16
-
-
0003255599
-
Probabilistic kernel regression models
-
D. Heckerman and J. Whittaker, editors. Morgan Kaufmann
-
Tommi Jaakkola and David Haussler. Probabilistic kernel regression models. In D. Heckerman and J. Whittaker, editors, Workshop on Artificial Intelligence and Statistics 7. Morgan Kaufmann, 1999.
-
(1999)
Workshop on Artificial Intelligence and Statistics
, vol.7
-
-
Jaakkola, T.1
Haussler, D.2
-
19
-
-
0041995179
-
(Not) bounding the true error
-
T. Dietterich, S. Becker, and Z. Ghahramani, editors. MIT Press
-
John Langford and Rich Caruana. (Not) bounding the true error. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 809-816. MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 809-816
-
-
Langford, J.1
Caruana, R.2
-
20
-
-
0042496014
-
Bounds for averaging classifiers
-
Carnegie Mellon University, January
-
John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical Report CMU-CS-01-102, Carnegie Mellon University, January 2001.
-
(2001)
Technical Report
, vol.CMU-CS-01-102
-
-
Langford, J.1
Seeger, M.2
-
22
-
-
0041995194
-
Relating data compression and learnability
-
University of California, Santa Cruz
-
Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Technical report, University of California, Santa Cruz, 1986.
-
(1986)
Technical Report
-
-
Littlestone, N.1
Warmuth, M.2
-
26
-
-
0033281518
-
Some PAC-Bayesian theorems
-
David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355-363, 1999b.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 355-363
-
-
McAllester, D.1
-
27
-
-
0042496013
-
PAC-Bayesian stochastic model selection
-
David McAllester. PAC-Bayesian stochastic model selection. To appear in Machine Learning. See www.autoreason.com., 2002.
-
(2002)
Machine Learning
-
-
McAllester, D.1
-
29
-
-
0041995178
-
Data-dependent bounds for Bayesian mixture methods
-
citeseer.nj.nee.com/536920.html
-
Ron Meir and Tong Zhang. Data-dependent bounds for Bayesian mixture methods. To appear in Neural Information Processing Systems 15. See citeseer.nj.nee.com/536920.html, 2002.
-
(2002)
Neural Information Processing Systems
, vol.15
-
-
Meir, R.1
Zhang, T.2
-
31
-
-
0004220749
-
Monte Carlo implementation of Gaussian process models for Bayesian classification and regression
-
Department of Statistics, University of Toronto, January
-
Radford M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian classification and regression. Technical Report 9702, Department of Statistics, University of Toronto, January 1997.
-
(1997)
Technical Report
, vol.9702
-
-
Neal, R.M.1
-
32
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithms
-
Manfred Opper and Ole Whither. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Whither, O.2
-
33
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
-
John C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
34
-
-
0004161838
-
-
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C. Cambridge University Press, 2nd edition, 1992.
-
(1992)
Numerical Recipes in C. Cambridge University Press, 2nd Edition
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
36
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, 1958.
-
(1958)
Psychological Review
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
38
-
-
84898947199
-
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
-
S. Solla, T. Leen, and K.-R. Müller, editors. MIT Press
-
Matthias Seeger. Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers. In S. Solla, T. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 603-609. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.125
, pp. 603-609
-
-
Seeger, M.1
-
39
-
-
0041494205
-
PAC-Bayesian generalization error bounds for Gaussian process classification
-
Division of Informatics, University of Edinburgh
-
Matthias Seeger. PAC-Bayesian generalization error bounds for Gaussian process classification. Technical Report EDI-INF-RR-0094, Division of Informatics, University of Edinburgh, 2002. See www.dai.ed.ac.uk/̃seeger/papers.html.
-
(2002)
Technical Report
, vol.EDI-INF-RR-0094
-
-
Seeger, M.1
-
40
-
-
0042996802
-
Sparse Bayesian learning: The informative vector machine
-
Department of Computer Science, Sheffield, UK
-
Matthias Seeger, Neil D. Lawrence, and Ralf Herbrich. Sparse Bayesian learning: The informative vector machine. Technical report, Department of Computer Science, Sheffield, UK, 2002. See www.dcs.shef.ac.uk/̃neil/papers/.
-
(2002)
Technical Report
-
-
Seeger, M.1
Lawrence, N.D.2
Herbrich, R.3
-
41
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5): 1926-1940, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
42
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
-
Alex Smola and Peter Bartlett. Sparse greedy Gaussian process regression. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 619-625. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 619-625
-
-
Smola, A.1
Bartlett, P.2
-
43
-
-
84898945810
-
Learning curves for Gaussian processes
-
M. Kearns, S. Solla, and D. Cohn, editors. MIT Press
-
Peter Sollich. Learning curves for Gaussian processes. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 344-350. MIT Press, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 344-350
-
-
Sollich, P.1
-
44
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Michael Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
45
-
-
0034320395
-
A Bayesian committee machine
-
Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719-2741, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2719-2741
-
-
Tresp, V.1
-
46
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
48
-
-
0003241881
-
Spline models for observational data
-
SIAM Society for Industrial and Applied Mathematics
-
Grace Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series. SIAM Society for Industrial and Applied Mathematics, 1990.
-
(1990)
CBMS-NSF Regional Conference Series
-
-
Wahba, G.1
-
49
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
-
Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 18, pages 682-688. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.18
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
-
50
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan, editor. Kluwer
-
Christopher K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1997.
-
(1997)
Learning in Graphical Models
-
-
Williams, C.K.I.1
|