메뉴 건너뛰기




Volumn 3, Issue 2, 2003, Pages 233-269

PAC-Bayesian generalisation error bounds for Gaussian process classification

Author keywords

Bayesian Learning; Convex Duality; Gaussian Processes; Generalisation Error Bounds; Gibbs Classifier; Kernel Machines; PAC Bayesian Framework; Sparse Approximations

Indexed keywords

FEATURE EXTRACTION; LEARNING ALGORITHMS; PROBABILITY; THEOREM PROVING;

EID: 0041464774     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244303765208386     Document Type: Article
Times cited : (279)

References (51)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Christopher Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 3
    • 84889281816 scopus 로고
    • Elements of information theory
    • John Wiley & Sons, 1st edition
    • Thomas Cover and Joy Thomas. Elements of Information Theory. Series in Telecommunications. John Wiley & Sons, 1st edition, 1991.
    • (1991) Series in Telecommunications
    • Cover, T.1    Thomas, J.2
  • 5
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation, 14:641-668, 2002.
    • (2002) Neural Computation , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 9
    • 0028132501 scopus 로고
    • Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension
    • David Haussler, Michael Kearns, and Robert Schapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. Machine Learning, 14:83-113, 1994.
    • (1994) Machine Learning , vol.14 , pp. 83-113
    • Haussler, D.1    Kearns, M.2    Schapire, R.3
  • 10
    • 0031326925 scopus 로고    scopus 로고
    • Mutual information, metric entropy and cumulative relative entropy risk
    • David Haussler and Manfred Opper. Mutual information, metric entropy and cumulative relative entropy risk. Annals of Statistics, 25(6):2451-2492, 1997.
    • (1997) Annals of Statistics , vol.25 , Issue.6 , pp. 2451-2492
    • Haussler, D.1    Opper, M.2
  • 12
    • 84894167296 scopus 로고    scopus 로고
    • A PAC-Bayesian margin bound for linear classifiers: Why SVMs work
    • T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
    • Ralf Herbrich and Thore Graepel. A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 224-230. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 224-230
    • Herbrich, R.1    Graepel, T.2
  • 13
    • 0041995176 scopus 로고    scopus 로고
    • Algorithmic luckiness
    • T. Dietterich, S. Becker, and Z. Ghahramani, editors. MIT Press
    • Ralf Herbrich and Robert Williamson. Algorithmic luckiness. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 391-397. MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 391-397
    • Herbrich, R.1    Williamson, R.2
  • 14
    • 0004151494 scopus 로고
    • Cambridge University Press, 1st edition
    • Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1st edition, 1985.
    • (1985) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 16
    • 0003255599 scopus 로고    scopus 로고
    • Probabilistic kernel regression models
    • D. Heckerman and J. Whittaker, editors. Morgan Kaufmann
    • Tommi Jaakkola and David Haussler. Probabilistic kernel regression models. In D. Heckerman and J. Whittaker, editors, Workshop on Artificial Intelligence and Statistics 7. Morgan Kaufmann, 1999.
    • (1999) Workshop on Artificial Intelligence and Statistics , vol.7
    • Jaakkola, T.1    Haussler, D.2
  • 19
    • 0041995179 scopus 로고    scopus 로고
    • (Not) bounding the true error
    • T. Dietterich, S. Becker, and Z. Ghahramani, editors. MIT Press
    • John Langford and Rich Caruana. (Not) bounding the true error. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 809-816. MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 809-816
    • Langford, J.1    Caruana, R.2
  • 20
    • 0042496014 scopus 로고    scopus 로고
    • Bounds for averaging classifiers
    • Carnegie Mellon University, January
    • John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical Report CMU-CS-01-102, Carnegie Mellon University, January 2001.
    • (2001) Technical Report , vol.CMU-CS-01-102
    • Langford, J.1    Seeger, M.2
  • 22
    • 0041995194 scopus 로고
    • Relating data compression and learnability
    • University of California, Santa Cruz
    • Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Technical report, University of California, Santa Cruz, 1986.
    • (1986) Technical Report
    • Littlestone, N.1    Warmuth, M.2
  • 26
    • 0033281518 scopus 로고    scopus 로고
    • Some PAC-Bayesian theorems
    • David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355-363, 1999b.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 355-363
    • McAllester, D.1
  • 27
    • 0042496013 scopus 로고    scopus 로고
    • PAC-Bayesian stochastic model selection
    • David McAllester. PAC-Bayesian stochastic model selection. To appear in Machine Learning. See www.autoreason.com., 2002.
    • (2002) Machine Learning
    • McAllester, D.1
  • 29
    • 0041995178 scopus 로고    scopus 로고
    • Data-dependent bounds for Bayesian mixture methods
    • citeseer.nj.nee.com/536920.html
    • Ron Meir and Tong Zhang. Data-dependent bounds for Bayesian mixture methods. To appear in Neural Information Processing Systems 15. See citeseer.nj.nee.com/536920.html, 2002.
    • (2002) Neural Information Processing Systems , vol.15
    • Meir, R.1    Zhang, T.2
  • 31
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian classification and regression
    • Department of Statistics, University of Toronto, January
    • Radford M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian classification and regression. Technical Report 9702, Department of Statistics, University of Toronto, January 1997.
    • (1997) Technical Report , vol.9702
    • Neal, R.M.1
  • 32
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean field algorithms
    • Manfred Opper and Ole Whither. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11):2655-2684, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Whither, O.2
  • 33
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
    • John C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 36
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, 1958.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 38
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
    • S. Solla, T. Leen, and K.-R. Müller, editors. MIT Press
    • Matthias Seeger. Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers. In S. Solla, T. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 603-609. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.125 , pp. 603-609
    • Seeger, M.1
  • 39
    • 0041494205 scopus 로고    scopus 로고
    • PAC-Bayesian generalization error bounds for Gaussian process classification
    • Division of Informatics, University of Edinburgh
    • Matthias Seeger. PAC-Bayesian generalization error bounds for Gaussian process classification. Technical Report EDI-INF-RR-0094, Division of Informatics, University of Edinburgh, 2002. See www.dai.ed.ac.uk/̃seeger/papers.html.
    • (2002) Technical Report , vol.EDI-INF-RR-0094
    • Seeger, M.1
  • 40
    • 0042996802 scopus 로고    scopus 로고
    • Sparse Bayesian learning: The informative vector machine
    • Department of Computer Science, Sheffield, UK
    • Matthias Seeger, Neil D. Lawrence, and Ralf Herbrich. Sparse Bayesian learning: The informative vector machine. Technical report, Department of Computer Science, Sheffield, UK, 2002. See www.dcs.shef.ac.uk/̃neil/papers/.
    • (2002) Technical Report
    • Seeger, M.1    Lawrence, N.D.2    Herbrich, R.3
  • 42
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
    • Alex Smola and Peter Bartlett. Sparse greedy Gaussian process regression. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 619-625. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 619-625
    • Smola, A.1    Bartlett, P.2
  • 43
    • 84898945810 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes
    • M. Kearns, S. Solla, and D. Cohn, editors. MIT Press
    • Peter Sollich. Learning curves for Gaussian processes. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 344-350. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 344-350
    • Sollich, P.1
  • 44
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Michael Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 45
    • 0034320395 scopus 로고    scopus 로고
    • A Bayesian committee machine
    • Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719-2741, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2719-2741
    • Tresp, V.1
  • 46
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 48
    • 0003241881 scopus 로고
    • Spline models for observational data
    • SIAM Society for Industrial and Applied Mathematics
    • Grace Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series. SIAM Society for Industrial and Applied Mathematics, 1990.
    • (1990) CBMS-NSF Regional Conference Series
    • Wahba, G.1
  • 49
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • T. Leen, T. Dietterich, and V. Tresp, editors. MIT Press
    • Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 18, pages 682-688. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.18 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 50
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan, editor. Kluwer
    • Christopher K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1997.
    • (1997) Learning in Graphical Models
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.