-
1
-
-
84913554539
-
Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification
-
Raggatt, L. J., et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am. J. Pathol. 184, 3192-3204 (2014
-
(2014)
Am. J. Pathol
, vol.184
, pp. 3192-3204
-
-
Raggatt, L.J.1
-
2
-
-
84885388561
-
The promotion of mandibular defect healing by the targeting of s1p receptors and the recruitment of alternatively activated macrophages
-
Das, A., Segar, C. E., Hughley, B. B., Bowers, D. T. & Botchwey, E. A. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials 34, 9853-9862 (2013
-
(2013)
Biomaterials
, vol.34
, pp. 9853-9862
-
-
Das, A.1
Segar, C.E.2
Hughley, B.B.3
Bowers, D.T.4
Botchwey, E.A.5
-
3
-
-
84901312984
-
Clinical impact of circulating cd34-positive cells on bone regeneration and healing
-
Kuroda, R., et al. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng. Part B Rev. 20, 190-199 (2014
-
(2014)
Tissue Eng. Part B Rev
, vol.20
, pp. 190-199
-
-
Kuroda, R.1
-
4
-
-
84891363682
-
Stem cell-based approaches to engineering vascularized bone
-
Hutton, D. L. & Grayson, W. L. Stem cell-based approaches to engineering vascularized bone. Curr. Opin. Chem. Eng. 3, 75-82 (2014
-
(2014)
Curr. Opin. Chem. Eng
, vol.3
, pp. 75-82
-
-
Hutton, D.L.1
Grayson, W.L.2
-
5
-
-
77955806398
-
Craniofacial reconstruction with bone and biomaterials: Review over the last 11 years
-
Neovius, E. & Engstrand, T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J. Plast. Reconstr. Aesthet. Surg. 63, 1615-1623 (2010
-
(2010)
J. Plast. Reconstr. Aesthet. Surg
, vol.63
, pp. 1615-1623
-
-
Neovius, E.1
Engstrand, T.2
-
6
-
-
0025062505
-
Bone-formation by osteoblast-like cells in a 3 dimensional cell-culture
-
Casserbette, M., Murray, A. B., Closs, E. I., Erfle, V. & Schmidt, J. Bone-formation by osteoblast-like cells in a 3 dimensional cell-culture. Calcif. Tissue Int. 46, 46-56 (1990
-
(1990)
Calcif. Tissue Int
, vol.46
, pp. 46-56
-
-
Casserbette, M.1
Murray, A.B.2
Closs, E.I.3
Erfle, V.4
Schmidt, J.5
-
7
-
-
77649252163
-
Human stem cell delivery for treatment of large segmental bone defects
-
Dupont, K. M., et al. Human stem cell delivery for treatment of large segmental bone defects. Proc. Natl Acad. Sci. USA 107, 3305-3310 (2010
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 3305-3310
-
-
Dupont, K.M.1
-
8
-
-
0017103248
-
Precursor cells of mechanocytes
-
Friedenstein, A. J. Precursor cells of mechanocytes. Int. Rev. Cytol. 47, 327-359 (1976
-
(1976)
Int. Rev. Cytol
, vol.47
, pp. 327-359
-
-
Friedenstein, A.J.1
-
9
-
-
0015466859
-
Thymus cells are inducible to osteogenesis
-
Friedenstein, A. J. & Lalykina, K. S. Thymus cells are inducible to osteogenesis. Eur. J. Immunol. 2, 602-603 (1972
-
(1972)
Eur. J. Immunol
, vol.2
, pp. 602-603
-
-
Friedenstein, A.J.1
Lalykina, K.S.2
-
10
-
-
0014261390
-
Heterotopic of bone marrow analysis of precursor cells for osteogenic and hematopoietic tissues
-
Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. & Frolova, G. P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230-247 (1968
-
(1968)
Transplantation
, vol.6
, pp. 230-247
-
-
Friedenstein, A.J.1
Petrakova, K.V.2
Kurolesova, A.I.3
Frolova, G.P.4
-
11
-
-
0024252149
-
Stromal stem cells: Marrow-derived osteogenic precursors
-
Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42-60 (1988
-
(1988)
Ciba Found. Symp
, vol.136
, pp. 42-60
-
-
Owen, M.1
Friedenstein, A.J.2
-
12
-
-
0019059174
-
Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo
-
Ashton, B. A., et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res. 151, 294-307 (1980
-
(1980)
Clin. Orthop. Relat. Res
, vol.151
, pp. 294-307
-
-
Ashton, B.A.1
-
13
-
-
0017110001
-
Cellular interrelationships during in vitro granulopoiesis
-
Allen, T. D. & Dexter, T. M. Cellular interrelationships during in vitro granulopoiesis. Differentiation 6, 191-194 (1976
-
(1976)
Differentiation
, vol.6
, pp. 191-194
-
-
Allen, T.D.1
Dexter, T.M.2
-
14
-
-
0017694555
-
Conditions controlling the proliferation of haemopoietic stem cells in vitro
-
Dexter, T. M., Allen, T. D. & Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335-344 (1977
-
(1977)
J. Cell. Physiol
, vol.91
, pp. 335-344
-
-
Dexter, T.M.1
Allen, T.D.2
Lajtha, L.G.3
-
15
-
-
0020075344
-
Clonal preadipocyte cell lines with different phenotypes derived from murine marrow stroma: Factors influencing growth and adipogenesis in vitro
-
Lanotte, M., Scott, D., Dexter, T. M. & Allen, T. D. Clonal preadipocyte cell lines with different phenotypes derived from murine marrow stroma: factors influencing growth and adipogenesis in vitro. J. Cell. Physiol. 111, 177-186 (1982
-
(1982)
J. Cell. Physiol
, vol.111
, pp. 177-186
-
-
Lanotte, M.1
Scott, D.2
Dexter, T.M.3
Allen, T.D.4
-
16
-
-
0023666136
-
A single bone marrow-derived stromal cell type supports the in vitro growth of early lymphoid and myeloid cells
-
Hunt, P., et al. A single bone marrow-derived stromal cell type supports the in vitro growth of early lymphoid and myeloid cells. Cell 48, 997-1007 (1987
-
(1987)
Cell
, vol.48
, pp. 997-1007
-
-
Hunt, P.1
-
17
-
-
0023884998
-
Stromal cell lines which support lymphocyte growth: Characterization, sensitivity to radiation and responsiveness to growth factors
-
Pietrangeli, C. E., Hayashi, S. & Kincade, P. W. Stromal cell lines which support lymphocyte growth: characterization, sensitivity to radiation and responsiveness to growth factors. Eur. J. Immunol. 18, 863-872 (1988
-
(1988)
Eur. J. Immunol
, vol.18
, pp. 863-872
-
-
Pietrangeli, C.E.1
Hayashi, S.2
Kincade, P.W.3
-
18
-
-
0023666173
-
Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre b neoplasia-Associated molecule
-
Whitlock, C. A., Tidmarsh, G. F., Muller Sieburg, C. & Weissman, I. L. Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre B neoplasia-Associated molecule. Cell 48, 1009-1021 (1987
-
(1987)
Cell
, vol.48
, pp. 1009-1021
-
-
Whitlock, C.A.1
Tidmarsh, G.F.2
Muller Sieburg, C.3
Weissman, I.L.4
-
19
-
-
0024282606
-
Stimulation of b cell progenitors by cloned murine interleukin 7
-
Namen, A. E., et Al. Stimulation of B Cell Progenitors by Cloned Murine Interleukin 7. Nature 333, 571-573 (1988
-
(1988)
Nature
, vol.333
, pp. 571-573
-
-
Namen, A.E.1
-
20
-
-
0024198038
-
Recombinant interleukin 7 supports the growth of normal b lymphocyte precursors
-
Lee, G., Namen, A. E., Gillis, S. & Kincade, P. W. Recombinant interleukin 7 supports the growth of normal B lymphocyte precursors. Curr. Top. Microbiol. Immunol. 141, 16-18 (1988
-
(1988)
Curr. Top. Microbiol. Immunol
, vol.141
, pp. 16-18
-
-
Lee, G.1
Namen, A.E.2
Gillis, S.3
Kincade, P.W.4
-
21
-
-
11944260623
-
Molecular cloning of a cdna encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine
-
Paul, S. R., et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl Acad. Sci. USA 87, 7512-7516 (1990
-
(1990)
Proc. Natl Acad. Sci. USA
, vol.87
, pp. 7512-7516
-
-
Paul, S.R.1
-
22
-
-
0026228558
-
Mesenchymal stem cells
-
Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641-650 (1991
-
(1991)
J. Orthop. Res
, vol.9
, pp. 641-650
-
-
Caplan, A.I.1
-
23
-
-
0028788268
-
Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5 azacytidine
-
Wakitani, S., Saito, T. & Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5 azacytidine. Muscle Nerve 18, 1417-1426 (1995
-
(1995)
Muscle Nerve
, vol.18
, pp. 1417-1426
-
-
Wakitani, S.1
Saito, T.2
Caplan, A.I.3
-
24
-
-
0026525255
-
Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies
-
Haynesworth, S. E., Baber, M. A. & Caplan, A. I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13, 69-80 (1992
-
(1992)
Bone
, vol.13
, pp. 69-80
-
-
Haynesworth, S.E.1
Baber, M.A.2
Caplan, A.I.3
-
25
-
-
0025741349
-
Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody stro 1
-
Simmons, P. J. & Torok-Storb, B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO 1. Blood 78, 55-62 (1991
-
(1991)
Blood
, vol.78
, pp. 55-62
-
-
Simmons, P.J.1
Torok-Storb, B.2
-
26
-
-
33747713246
-
Minimal criteria for defining multipotent mesenchymal stromal cells
-
The International Society for Cellular Therapy position statement
-
Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006
-
(2006)
Cytotherapy
, vol.8
, pp. 315-317
-
-
Dominici, M.1
-
27
-
-
84893725179
-
Msc-based product characterization for clinical trials: An fda perspective
-
Mendicino, M., Bailey, A. M., Wonnacott, K., Puri, R. K. & Bauer, S. R. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14, 141-145 (2014
-
(2014)
Cell Stem Cell
, vol.14
, pp. 141-145
-
-
Mendicino, M.1
Bailey, A.M.2
Wonnacott, K.3
Puri, R.K.4
Bauer, S.R.5
-
28
-
-
84868010082
-
Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells
-
Lo Surdo, J. & Bauer, S. R. Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells. Tissue Eng. Part C Methods 18, 877-889 (2012
-
(2012)
Tissue Eng. Part C Methods
, vol.18
, pp. 877-889
-
-
Lo Surdo, J.1
Bauer, S.R.2
-
29
-
-
84887116253
-
Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells
-
Lo Surdo, J. L., Millis, B. A. & Bauer, S. R. Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells. Cytotherapy 15, 1527-1540 (2013
-
(2013)
Cytotherapy
, vol.15
, pp. 1527-1540
-
-
Lo Surdo, J.L.1
Millis, B.A.2
Bauer, S.R.3
-
30
-
-
84870720871
-
Improved proteomic profiling of the cell surface of culture-expanded human bone marrow multipotent stromal cells
-
Mindaye, S. T., Ra, M., Lo Surdo, J., Bauer, S. R. & Alterman, M. A. Improved proteomic profiling of the cell surface of culture-expanded human bone marrow multipotent stromal cells. J. Proteomics 78, 1-14 (2013
-
(2013)
J. Proteomics
, vol.78
, pp. 1-14
-
-
Mindaye, S.T.1
Ra, M.2
Lo Surdo, J.3
Bauer, S.R.4
Alterman, M.A.5
-
31
-
-
84879488905
-
Global proteomic signature of undifferentiated human bone marrow stromal cells: Evidence for donor to donor proteome heterogeneity
-
Mindaye, S. T., Ra, M., Lo Surdo, J. L., Bauer, S. R. & Alterman, M. A. Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor to donor proteome heterogeneity. Stem Cell Res. 11, 793-805 (2013
-
(2013)
Stem Cell Res
, vol.11
, pp. 793-805
-
-
Mindaye, S.T.1
Ra, M.2
Lo Surdo, J.L.3
Bauer, S.R.4
Alterman, M.A.5
-
32
-
-
84872088799
-
The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine
-
Bianco, P., et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35-42 (2013
-
(2013)
Nat. Med
, vol.19
, pp. 35-42
-
-
Bianco, P.1
-
33
-
-
84927949762
-
Bone marrow stromal cell assays: In vitro and in vivo
-
Robey, P. G., Kuznetsov, S. A., Riminucci, M. & Bianco, P. Bone marrow stromal cell assays: in vitro and in vivo. Methods Mol. Biol. 1130, 279-293 (2014
-
(2014)
Methods Mol. Biol
, vol.1130
, pp. 279-293
-
-
Robey, P.G.1
Kuznetsov, S.A.2
Riminucci, M.3
Bianco, P.4
-
34
-
-
0035067539
-
Multilineage cells from human adipose tissue: Implications for cell-based therapies
-
Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228 (2001
-
(2001)
Tissue Eng
, vol.7
, pp. 211-228
-
-
Zuk, P.A.1
-
35
-
-
33846120651
-
Isolation of amniotic stem cell lines with potential for therapy
-
De Coppi, P., et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100-106 (2007
-
(2007)
Nat. Biotechnol
, vol.25
, pp. 100-106
-
-
De Coppi, P.1
-
36
-
-
0037237389
-
Matrix cells from wharton's jelly form neurons and glia
-
Mitchell, K. E., et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21, 50-60 (2003
-
(2003)
Stem Cells
, vol.21
, pp. 50-60
-
-
Mitchell, K.E.1
-
37
-
-
43049151898
-
Wharton's jelly-derived cells are a primitive stromal cell population
-
Troyer, D. L. & Weiss, M. L. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 26, 591-599 (2008
-
(2008)
Stem Cells
, vol.26
, pp. 591-599
-
-
Troyer, D.L.1
Weiss, M.L.2
-
38
-
-
0034610376
-
Postnatal human dental pulp stem cells (dpscs) in vitro and in vivo
-
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCS) in vitro and in vivo. Proc. Natl Acad. Sci. USA 97, 13625-13630 (2000
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 13625-13630
-
-
Gronthos, S.1
Mankani, M.2
Brahim, J.3
Robey, P.G.4
Shi, S.5
-
39
-
-
35349007429
-
Muscle-derived stem cells for tissue engineering and regenerative therapy
-
Usas, A. & Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28, 5401-5406 (2007
-
(2007)
Biomaterials
, vol.28
, pp. 5401-5406
-
-
Usas, A.1
Huard, J.2
-
40
-
-
84895768680
-
Characterization of mesenchymal progenitor cell populations directly derived from human dermis
-
Feisst, V., Brooks, A. E., Chen, C. J. & Dunbar, P. R. Characterization of mesenchymal progenitor cell populations directly derived from human dermis. Stem Cells Dev. 23, 631-642 (2014
-
(2014)
Stem Cells Dev
, vol.23
, pp. 631-642
-
-
Feisst, V.1
Brooks, A.E.2
Chen, C.J.3
Dunbar, P.R.4
-
41
-
-
0034079140
-
Mesenchymal progenitor cells in human umbilical cord blood
-
Erices, A., Conget, P. & Minguell, J. J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242 (2000
-
(2000)
Br. J. Haematol
, vol.109
, pp. 235-242
-
-
Erices, A.1
Conget, P.2
Minguell, J.J.3
-
42
-
-
33745437684
-
Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
-
Kern, S., Eichler, H., Stoeve, J., Kluter, H. & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294-1301 (2006
-
(2006)
Stem Cells
, vol.24
, pp. 1294-1301
-
-
Kern, S.1
Eichler, H.2
Stoeve, J.3
Kluter, H.4
Bieback, K.5
-
43
-
-
18444409048
-
Identification of a novel population of muscle stem cells in mice: Potential for muscle regeneration
-
Qu-Petersen, Z., et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157, 851-864 (2002
-
(2002)
J. Cell Biol
, vol.157
, pp. 851-864
-
-
Qu-Petersen, Z.1
-
44
-
-
18744373595
-
Human adipose tissue is a source of multipotent stem cells
-
Zuk, P. A., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279-4295 (2002
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 4279-4295
-
-
Zuk, P.A.1
-
45
-
-
0034829424
-
Surface protein characterization of human adipose tissue-derived stromal cells
-
Gronthos, S., et al. Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol. 189, 54-63 (2001
-
(2001)
J. Cell. Physiol
, vol.189
, pp. 54-63
-
-
Gronthos, S.1
-
46
-
-
50849139576
-
A perivascular origin for mesenchymal stem cells in multiple human organs
-
Crisan, M., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313 (2008
-
(2008)
Cell Stem Cell
, vol.3
, pp. 301-313
-
-
Crisan, M.1
-
47
-
-
78650667231
-
Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles
-
Pachon-Pena, G., et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J. Cell. Physiol. 226, 843-851 (2011
-
(2011)
J. Cell. Physiol
, vol.226
, pp. 843-851
-
-
Pachon-Pena, G.1
-
48
-
-
84877577935
-
Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the international federation for adipose therapeutics and science (ifats) and the international society for cellular therapy (isct
-
Bourin, P., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15, 641-648 (2013
-
(2013)
Cytotherapy
, vol.15
, pp. 641-648
-
-
Bourin, P.1
-
49
-
-
0035679092
-
Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells
-
Halvorsen, Y. D., et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 7, 729-741 (2001
-
(2001)
Tissue Eng
, vol.7
, pp. 729-741
-
-
Halvorsen, Y.D.1
-
50
-
-
2342628515
-
Human adipose-derived adult stem cells produce osteoid in vivo
-
Hicok, K. C., et al. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10, 371-380 (2004
-
(2004)
Tissue Eng
, vol.10
, pp. 371-380
-
-
Hicok, K.C.1
-
51
-
-
2342511492
-
Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo
-
Justesen, J., Pedersen, S. B., Stenderup, K. & Kassem, M. Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Eng. 10, 381-391 (2004
-
(2004)
Tissue Eng
, vol.10
, pp. 381-391
-
-
Justesen, J.1
Pedersen, S.B.2
Stenderup, K.3
Kassem, M.4
-
52
-
-
67049086482
-
Novel maxillary reconstruction with ectopic bone formation by gmp adipose stem cells
-
Mesimaki, K., et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg. 38, 201-209 (2009
-
(2009)
Int. J. Oral Maxillofac. Surg
, vol.38
, pp. 201-209
-
-
Mesimaki, K.1
-
53
-
-
77956218260
-
Human adipose derived stromal cells heal critical size mouse calvarial defects
-
Levi, B., et al. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS ONE 5, e11177 (2010
-
(2010)
PLoS ONE
, vol.5
, pp. e11177
-
-
Levi, B.1
-
54
-
-
84897520575
-
Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-Tissue defects
-
Sandor, G. K., et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-Tissue defects. Stem Cells Transl Med. 3, 530-540 (2014
-
(2014)
Stem Cells Transl Med
, vol.3
, pp. 530-540
-
-
Sandor, G.K.1
-
55
-
-
80051516637
-
Differences in osteogenic differentiation of adipose-derived stromal cells from murine, canine, and human sources in vitro and in vivo
-
Levi, B., et al. Differences in osteogenic differentiation of adipose-derived stromal cells from murine, canine, and human sources in vitro and in vivo. Plast. Reconstr. Surg. 128, 373-386 (2011
-
(2011)
Plast. Reconstr. Surg
, vol.128
, pp. 373-386
-
-
Levi, B.1
-
56
-
-
40949139791
-
Osteogenic differentiation of human adipose-derived stem cells: Comparison of two different inductive media
-
de Girolamo, L., Sartori, M. F., Albisetti, W. & Brini, A. T. Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J. Tissue Eng. Regen. Med. 1, 154-157 (2007
-
(2007)
J. Tissue Eng. Regen. Med
, vol.1
, pp. 154-157
-
-
De Girolamo, L.1
Sartori, M.F.2
Albisetti, W.3
Brini, A.T.4
-
57
-
-
26444553353
-
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?
-
Im, G. I., Shin, Y. W. & Lee, K. B. Do Adipose Tissue-derived Mesenchymal Stem Cells Have the Same Osteogenic and Chondrogenic Potential As Bone Marrow-derived Cells?. Osteoarthritis Cartilage 13, 845-853 (2005
-
(2005)
Osteoarthritis Cartilage
, vol.13
, pp. 845-853
-
-
Im, G.I.1
Shin, Y.W.2
Lee, K.B.3
-
58
-
-
41049086500
-
Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue
-
Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H. & Ito, H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif. Tissue Int. 82, 238-247 (2008
-
(2008)
Calcif. Tissue Int
, vol.82
, pp. 238-247
-
-
Hayashi, O.1
Katsube, Y.2
Hirose, M.3
Ohgushi, H.4
Ito, H.5
-
59
-
-
84897564208
-
Gmp-level adipose stem cells combined with computer-Aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases
-
Wolff, J., et al. GMP-level adipose stem cells combined with computer-Aided manufacturing to reconstruct mandibular ameloblastoma resection defects: experience with three cases. Ann. Maxillofac. Surg. 3, 114-125 (2013
-
(2013)
Ann. Maxillofac. Surg
, vol.3
, pp. 114-125
-
-
Wolff, J.1
-
60
-
-
42949131684
-
The epigenetics of adult (somatic) stem cells
-
Eilertsen, K. J., Floyd, Z. & Gimble, J. M. The epigenetics of adult (somatic) stem cells. Crit. Rev. Eukaryot. Gene Expr. 18, 189-206 (2008
-
(2008)
Crit. Rev. Eukaryot. Gene Expr
, vol.18
, pp. 189-206
-
-
Eilertsen, K.J.1
Floyd, Z.2
Gimble, J.M.3
-
61
-
-
84883401281
-
Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells
-
Li, H., et al. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med. 2, 667-677 (2013
-
(2013)
Stem Cells Transl Med
, vol.2
, pp. 667-677
-
-
Li, H.1
-
62
-
-
84856628579
-
Skeletal muscle-derived stem cells: Implications for cell-mediated therapies
-
Usas, A., et al. Skeletal muscle-derived stem cells: implications for cell-mediated therapies. Medicina 47, 469-479 (2011
-
(2011)
Medicina
, vol.47
, pp. 469-479
-
-
Usas, A.1
-
63
-
-
84905253289
-
Role of donor and host cells in muscle-derived stem cell-mediated bone repair: Differentiation vs. Paracrine effects
-
Gao, X., et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 28, 3792-3809 (2014
-
(2014)
FASEB J
, vol.28
, pp. 3792-3809
-
-
Gao, X.1
-
64
-
-
7944220831
-
Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents
-
Studeny, M., et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst. 96, 1593-1603 (2004
-
(2004)
J. Natl Cancer Inst
, vol.96
, pp. 1593-1603
-
-
Studeny, M.1
-
65
-
-
84878463836
-
Exosomes from marrow stromal cells expressing mir 146b inhibit glioma growth
-
Katakowski, M., et al. Exosomes from marrow stromal cells expressing miR 146b inhibit glioma growth. Cancer Lett. 335, 201-204 (2013
-
(2013)
Cancer Lett
, vol.335
, pp. 201-204
-
-
Katakowski, M.1
-
66
-
-
34547167177
-
Targeted delivery of cx3cl1 to multiple lung tumors by mesenchymal stem cells
-
Xin, H., et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 25, 1618-1626 (2007
-
(2007)
Stem Cells
, vol.25
, pp. 1618-1626
-
-
Xin, H.1
-
67
-
-
66249083525
-
Mesenchymal stem cell delivery of trail can eliminate metastatic cancer
-
Loebinger, M. R., Eddaoudi, A., Davies, D. & Janes, S. M. Mesenchymal stem cell delivery of trail can eliminate metastatic cancer. Cancer Res. 69, 4134-4142 (2009
-
(2009)
Cancer Res
, vol.69
, pp. 4134-4142
-
-
Loebinger, M.R.1
Eddaoudi, A.2
Davies, D.3
Janes, S.M.4
-
68
-
-
84878258921
-
Tissue-derived mesenchymal stromal cells used as vehicles for anti-Tumor therapy exert different in vivo effects on migration capacity and tumor growth
-
Belmar-Lopez, C., et al. Tissue-derived mesenchymal stromal cells used as vehicles for anti-Tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med. 11, 139 (2013
-
(2013)
BMC Med
, vol.11
, pp. 139
-
-
Belmar-Lopez, C.1
-
69
-
-
79960080090
-
Mesenchymal stem cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer
-
Dwyer, R. M., et al. Mesenchymal stem cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells 29, 1149-1157 (2011
-
(2011)
Stem Cells
, vol.29
, pp. 1149-1157
-
-
Dwyer, R.M.1
-
70
-
-
84860639631
-
Mesenchymal stem cells engineered for cancer therapy
-
Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev. 64, 739-748 (2012
-
(2012)
Adv. Drug Deliv. Rev
, vol.64
, pp. 739-748
-
-
Shah, K.1
-
71
-
-
84907212875
-
Stem cell-mediated delivery of spio-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma
-
Zhao, J., et al. Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology 25, 5101-5101 (2014
-
(2014)
Nanotechnology
, vol.25
, pp. 5101-5101
-
-
Zhao, J.1
-
72
-
-
84878818425
-
Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors
-
Zhang, T., et al. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res. Ther. 4, 70 (2014
-
(2014)
Stem Cell Res. Ther
, vol.4
, pp. 70
-
-
Zhang, T.1
-
73
-
-
84901489826
-
Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling
-
Luo, J., et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 33, 2768-2778 (2013
-
(2013)
Oncogene
, vol.33
, pp. 2768-2778
-
-
Luo, J.1
-
74
-
-
4444289303
-
Growth and transplantation of a custom vascularised bone graft in a man
-
Warnke, P. H., et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364, 766-770 (2004
-
(2004)
Lancet
, vol.364
, pp. 766-770
-
-
Warnke, P.H.1
-
75
-
-
67049086482
-
Novel maxillary reconstruction with ectopic bone formation by gmp adipose stem cells
-
Mesimaki, K., et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg. 38, 201-209 (2009
-
(2009)
Int. J. Oral Maxillofac. Surg
, vol.38
, pp. 201-209
-
-
Mesimaki, K.1
-
76
-
-
84876415265
-
Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: A case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration
-
Sandor, G. K., et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J. Oral Maxillofac. Surg. 71, 938-950 (2013
-
(2013)
J. Oral Maxillofac. Surg
, vol.71
, pp. 938-950
-
-
Sandor, G.K.1
-
77
-
-
11044234825
-
Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report
-
Lendeckel, S., et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg. 32, 370-373 (2004
-
(2004)
J. Craniomaxillofac. Surg
, vol.32
, pp. 370-373
-
-
Lendeckel, S.1
-
78
-
-
84866415693
-
Recent advances in bone tissue engineering scaffolds
-
Bose, S., Roy, M. & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 546-554 (2012
-
(2012)
Trends Biotechnol
, vol.30
, pp. 546-554
-
-
Bose, S.1
Roy, M.2
Bandyopadhyay, A.3
-
79
-
-
84902086014
-
Bone tissue engineering: State of the union drug discov
-
Shrivats, A. R., McDermott, M. C. & Hollinger, J. O. Bone tissue engineering: state of the union. Drug Discov. Today 19, 781-786 (2014
-
(2014)
Today
, vol.19
, pp. 781-786
-
-
Shrivats, A.R.1
McDermott, M.C.2
Hollinger, J.O.3
-
80
-
-
84866851192
-
Personalized human bone grafts for reconstructing head and face
-
Bhumiratana, S. & Vunjak-Novakovic, G. Personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med. 1, 64-69 (2012
-
(2012)
Stem Cells Transl Med
, vol.1
, pp. 64-69
-
-
Bhumiratana, S.1
Vunjak-Novakovic, G.2
-
81
-
-
84911910831
-
Biomaterials for craniofacial bone engineering
-
Tevlin, R., et al. Biomaterials for craniofacial bone engineering. J. Dent. Res. 93, 1187-1195 (2014
-
(2014)
J. Dent. Res
, vol.93
, pp. 1187-1195
-
-
Tevlin, R.1
-
82
-
-
84881312927
-
Stem cell-based therapy for prevention of delayed fracture union: A randomized and prospective preliminary study
-
Liebergall, M., et al. Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol. Ther. 21, 1631-1638 (2013
-
(2013)
Mol. Ther
, vol.21
, pp. 1631-1638
-
-
Liebergall, M.1
-
83
-
-
80054838532
-
Autologous bone marrow cell implantation in the treatment of non-Traumatic osteonecrosis of the femoral head: Five year follow-up of a prospective controlled study
-
Gangji, V., De Maertelaer, V. & Hauzeur, J. P. Autologous bone marrow cell implantation in the treatment of non-Traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 49, 1005-1009 (2011
-
(2011)
Bone
, vol.49
, pp. 1005-1009
-
-
Gangji, V.1
De Maertelaer, V.2
Hauzeur, J.P.3
-
84
-
-
2642542690
-
Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells-A pilot study
-
Gangji, V., et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells-A pilot study. J. Bone Joint Surg. Am. 86-A, 1153-1160 (2004
-
(2004)
J. Bone Joint Surg. Am. 86-A
, pp. 1153-1160
-
-
Gangji, V.1
-
85
-
-
84886725857
-
The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: A five year follow-up study
-
Mao, Q., et al. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study. Bone 57, 509-516 (2013
-
(2013)
Bone
, vol.57
, pp. 509-516
-
-
Mao, Q.1
-
86
-
-
82655170631
-
Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells
-
Zhao, D., et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50, 325-330 (2012
-
(2012)
Bone
, vol.50
, pp. 325-330
-
-
Zhao, D.1
-
87
-
-
77956218260
-
Human adipose derived stromal cells heal critical size mouse calvarial defects
-
Levi, B., et al. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS ONE 5, e11177 (2010
-
(2010)
PLoS ONE
, vol.5
, pp. e11177
-
-
Levi, B.1
-
88
-
-
79960874212
-
Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects
-
Levi, B., et al. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells 29, 1241-1255 (2011
-
(2011)
Stem Cells
, vol.29
, pp. 1241-1255
-
-
Levi, B.1
-
89
-
-
2342586660
-
Adipose-derived adult stromal cells heal critical-size mouse calvarial defects
-
Cowan, C. M., et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22, 560-567 (2004
-
(2004)
Nat. Biotechnol
, vol.22
, pp. 560-567
-
-
Cowan, C.M.1
-
90
-
-
80053087080
-
Mechanical regulation of vascular growth and tissue regeneration in vivo
-
Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. & Guldberg, R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. USA 108, E674-E680 (2011
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. E674-E680
-
-
Boerckel, J.D.1
Uhrig, B.A.2
Willett, N.J.3
Huebsch, N.4
Guldberg, R.E.5
-
91
-
-
33746424373
-
Mesenchymal stem cells as trophic mediators
-
Caplan, A. I. & Dennis, J. E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076-1084 (2006
-
(2006)
J. Cell. Biochem
, vol.98
, pp. 1076-1084
-
-
Caplan, A.I.1
Dennis, J.E.2
-
92
-
-
84870250684
-
Cell transplantation as an initiator of endogenous stem cell-based tissue repair
-
Dong, F. & Caplan, A. I. Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Curr. Opin. Organ Transplant. 17, 670-674 (2012
-
(2012)
Curr. Opin. Organ Transplant
, vol.17
, pp. 670-674
-
-
Dong, F.1
Caplan, A.I.2
-
93
-
-
67650733297
-
The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of vegf
-
Eshkar-Oren, I., et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136, 1263-1272 (2009
-
(2009)
Development
, vol.136
, pp. 1263-1272
-
-
Eshkar-Oren, I.1
-
94
-
-
33744959141
-
Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1
-
Okuyama, H., et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J. Biol. Chem. 281, 15554-15563 (2006
-
(2006)
J. Biol. Chem
, vol.281
, pp. 15554-15563
-
-
Okuyama, H.1
-
95
-
-
58249105744
-
Blocking vascular endothelial growth factor with soluble flt 1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells
-
Kubo, S., et al. Blocking vascular endothelial growth factor with soluble Flt 1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 60, 155-165 (2009
-
(2009)
Arthritis Rheum
, vol.60
, pp. 155-165
-
-
Kubo, S.1
-
96
-
-
84863568189
-
A tissue engineering solution for segmental defect regeneration in load-bearing long bones
-
141ra93
-
Reichert, J. C., et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl Med. 4, 141ra93 (2012
-
(2012)
Sci. Transl Med
, vol.4
-
-
Reichert, J.C.1
-
97
-
-
24944529153
-
Bone graft versus bmp 7 in a critical size defect-cranioplasty in a growing infant model
-
Springer, I. N., et al. Bone graft versus BMP 7 in a critical size defect-cranioplasty in a growing infant model. Bone 37, 563-569 (2005
-
(2005)
Bone
, vol.37
, pp. 563-569
-
-
Springer, I.N.1
-
98
-
-
84859934323
-
Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine
-
Wilson, S. M., et al. Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine. J. Oral Maxillofac. Surg. 70, E193-E203 (2012
-
(2012)
J. Oral Maxillofac. Surg
, vol.70
, pp. E193-E203
-
-
Wilson, S.M.1
-
99
-
-
47149102903
-
Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature
-
Au, P., Tam, J., Fukumura, D. & Jain, R. K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551-4558 (2008
-
(2008)
Blood
, vol.111
, pp. 4551-4558
-
-
Au, P.1
Tam, J.2
Fukumura, D.3
Jain, R.K.4
-
100
-
-
82555178429
-
In vitro model of vascularized bone: Synergizing vasculogenesis and osteogenesis
-
Correia, C., et al. In vitro model of vascularized bone: synergizing vasculogenesis and osteogenesis. PLoS ONE 6, e28352 (2011
-
(2011)
PLoS ONE
, vol.6
, pp. e28352
-
-
Correia, C.1
-
101
-
-
84905057017
-
Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts
-
Correia, C., et al. Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts. J. Tissue Eng. Regen. Med. 8, 629-639 (2012
-
(2012)
J. Tissue Eng. Regen. Med
, vol.8
, pp. 629-639
-
-
Correia, C.1
-
102
-
-
77649258698
-
Engineered vascularized bone grafts
-
Tsigkou, O., et al. Engineered vascularized bone grafts. Proc. Natl Acad. Sci. USA 107, 3311-3316 (2010
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 3311-3316
-
-
Tsigkou, O.1
-
103
-
-
84863380653
-
Sonic hedgehog-Activated engineered blood vessels enhance bone tissue formation
-
Rivron, N. C., et al. Sonic hedgehog-Activated engineered blood vessels enhance bone tissue formation. Proc. Natl Acad. Sci. USA 109, 4413-4418 (2012
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 4413-4418
-
-
Rivron, N.C.1
-
104
-
-
35348883223
-
Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2 dimensional and 3 dimensional co-cultures with osteoblastic lineage cells
-
Fuchs, S., Hofmann, A. & Kirkpatrick, C. J. Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2 dimensional and 3 dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 13, 2577-2588 (2007
-
(2007)
Tissue Eng
, vol.13
, pp. 2577-2588
-
-
Fuchs, S.1
Hofmann, A.2
Kirkpatrick, C.J.3
-
105
-
-
35748976814
-
Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels
-
Martineau, L. & Doillon, C. J. Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 10, 269-277 (2007
-
(2007)
Angiogenesis
, vol.10
, pp. 269-277
-
-
Martineau, L.1
Doillon, C.J.2
-
106
-
-
68449090011
-
Spheroid-based human endothelial cell microvessel formation in vivo
-
Laib, A. M., et al. Spheroid-based human endothelial cell microvessel formation in vivo. Nat. Protoc. 4, 1202-1215 (2009
-
(2009)
Nat. Protoc
, vol.4
, pp. 1202-1215
-
-
Laib, A.M.1
-
107
-
-
42949140307
-
Spheroid-based engineering of a human vasculature in mice
-
Alajati, A., et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5, 439-445 (2008
-
(2008)
Nat. Methods
, vol.5
, pp. 439-445
-
-
Alajati, A.1
-
108
-
-
84881136799
-
Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells
-
Hutton, D. L., Moore, E. M., Gimble, J. & Grayson, W. L. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng. Part A 19, 2076-2086 (2013
-
(2013)
Tissue Eng. Part A
, vol.19
, pp. 2076-2086
-
-
Hutton, D.L.1
Moore, E.M.2
Gimble, J.3
Grayson, W.L.4
-
109
-
-
84865303887
-
Biomaterial delivery of morphogens to mimic the natural healing cascade in bone
-
Mehta, M., Schmidt-Bleek, K., Duda, G. N. & Mooney, D. J. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64, 1257-1276 (2012
-
(2012)
Adv. Drug Deliv. Rev
, vol.64
, pp. 1257-1276
-
-
Mehta, M.1
Schmidt-Bleek, K.2
Duda, G.N.3
Mooney, D.J.4
-
110
-
-
84873549333
-
Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
-
Kaigler, D., Silva, E. A. & Mooney, D. J. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J. Periodontol. 84, 230-238 (2013
-
(2013)
J. Periodontol
, vol.84
, pp. 230-238
-
-
Kaigler, D.1
Silva, E.A.2
Mooney, D.J.3
-
111
-
-
80052951552
-
Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing
-
100ra89
-
Martino, M. M., et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl Med. 3, 100ra89 (2011
-
(2011)
Sci. Transl Med
, vol.3
-
-
Martino, M.M.1
-
112
-
-
79959900850
-
Tunable dual growth factor delivery from polyelectrolyte multilayer films
-
Shah, N. J., et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32, 6183-6193 (2011
-
(2011)
Biomaterials
, vol.32
, pp. 6183-6193
-
-
Shah, N.J.1
-
113
-
-
84880536020
-
Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings
-
191ra183
-
Shah, N. J., et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci. Transl Med. 5, 191ra183 (2013
-
(2013)
Sci. Transl Med
, vol.5
-
-
Shah, N.J.1
-
114
-
-
66149114779
-
Perfluorocarbon emulsions as a promising technology: A review of tissue and vascular gas dynamics
-
Spiess, B. D. Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J. Appl. Physiol. 106, 1444-1452 (2009
-
(2009)
J. Appl. Physiol
, vol.106
, pp. 1444-1452
-
-
Spiess, B.D.1
-
115
-
-
67749101742
-
The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo
-
Kimelman-Bleich, N., et al. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials 30, 4639-4648 (2009
-
(2009)
Biomaterials
, vol.30
, pp. 4639-4648
-
-
Kimelman-Bleich, N.1
-
116
-
-
0344874751
-
Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1
-
Kelly, B. D., et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93, 1074-1081 (2003
-
(2003)
Circ. Res
, vol.93
, pp. 1074-1081
-
-
Kelly, B.D.1
-
117
-
-
37349115260
-
Effects of aging and hypoxia-inducible factor 1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia
-
Bosch-Marce, M., et al. Effects of aging and hypoxia-inducible factor 1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ. Res. 101, 1310-1318 (2007
-
(2007)
Circ. Res
, vol.101
, pp. 1310-1318
-
-
Bosch-Marce, M.1
-
118
-
-
34249913494
-
The hypoxia-inducible factor a pathway couples angiogenesis to osteogenesis during skeletal development
-
Wang, Y., et al. The hypoxia-inducible factor a pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616-1626 (2007
-
(2007)
J. Clin. Invest
, vol.117
, pp. 1616-1626
-
-
Wang, Y.1
-
119
-
-
36549059660
-
Oxygen sensing and osteogenesis
-
Wang, Y., Wan, C., Gilbert, S. R. & Clemens, T. L. Oxygen sensing and osteogenesis. Ann. NY Acad. Sci. 1117, 1-11 (2007
-
(2007)
Ann. NY Acad. Sci
, vol.1117
, pp. 1-11
-
-
Wang, Y.1
Wan, C.2
Gilbert, S.R.3
Clemens, T.L.4
-
120
-
-
68949163251
-
Regulation of osteogenesis-Angiogenesis coupling by hifs and vegf
-
Schipani, E., Maes, C., Carmeliet, G. & Semenza, G. L. Regulation of osteogenesis-Angiogenesis coupling by HIFs and VEGF. J. Bone Miner. Res. 24, 1347-1353 (2009
-
(2009)
J. Bone Miner. Res
, vol.24
, pp. 1347-1353
-
-
Schipani, E.1
Maes, C.2
Carmeliet, G.3
Semenza, G.L.4
-
121
-
-
84908110116
-
Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning
-
Hu, X., et al. Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells 32, 2702-2713 (2014
-
(2014)
Stem Cells
, vol.32
, pp. 2702-2713
-
-
Hu, X.1
-
122
-
-
84872811485
-
Remote ischemic postconditioning enhances cell retention in the myocardium after intravenous administration of bone marrow mesenchymal stromal cells
-
Jiang, Q., et al. Remote ischemic postconditioning enhances cell retention in the myocardium after intravenous administration of bone marrow mesenchymal stromal cells. J. Mol. Cell. Cardiol. 56, 1-7 (2013
-
(2013)
J. Mol. Cell. Cardiol
, vol.56
, pp. 1-7
-
-
Jiang, Q.1
-
123
-
-
84868143949
-
Mosaic: A multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells
-
Carlier, A., et al. Mosaic: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol. 8, e10022724 (2012
-
(2012)
PLoS Comput. Biol
, vol.8
, pp. e10022724
-
-
Carlier, A.1
-
124
-
-
34147192842
-
Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering
-
Xie, C., et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 13, 435-445 (2007
-
(2007)
Tissue Eng
, vol.13
, pp. 435-445
-
-
Xie, C.1
-
125
-
-
84895902202
-
Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model
-
Huang, C., Tang, M., Yehling, E. & Zhang, X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol. Ther. 22, 430-439 (2014
-
(2014)
Mol. Ther
, vol.22
, pp. 430-439
-
-
Huang, C.1
Tang, M.2
Yehling, E.3
Zhang, X.4
-
126
-
-
81755188432
-
Harnessing the parathyroid hormone wnt, and bone morphogenetic protein signaling cascades for successful bone tissue engineering
-
Rosen, V. Harnessing the parathyroid hormone, Wnt, and bone morphogenetic protein signaling cascades for successful bone tissue engineering. Tissue Eng. Part B Rev. 17, 475-479 (2011
-
(2011)
Tissue Eng. Part B Rev
, vol.17
, pp. 475-479
-
-
Rosen, V.1
-
127
-
-
85027932729
-
Gene therapy approaches to regenerating bone
-
Bleich, N. K., et al. Gene therapy approaches to regenerating bone. Adv. Drug Deliv. Rev. 64, 1320-1330 (2012
-
(2012)
Adv. Drug Deliv. Rev
, vol.64
, pp. 1320-1330
-
-
Bleich, N.K.1
-
128
-
-
84886727143
-
Quantitative characterization of mesenchymal stem cell adhesion to the articular cartilage surface
-
Hung., B. P., Babalola, O. M. & Bonassar, L. J. Quantitative characterization of mesenchymal stem cell adhesion to the articular cartilage surface. J. Biomed. Mater. Res. A. 101, 3592-3598 (2013
-
(2013)
J. Biomed. Mater. Res.A.
, vol.101
, pp. 3592-3598
-
-
Hung, B.P.1
Babalola, O.M.2
Bonassar, L.J.3
-
129
-
-
84896282175
-
Adult human mesenchymal stem cells delivered via intra-Articular injection to the knee following partial medial meniscectomy
-
Vangsness, C. T., et al. Adult human mesenchymal stem cells delivered via intra-Articular injection to the knee following partial medial meniscectomy. J. Bone Joint Surg. Am. 96, 90-98 (2014
-
(2014)
J. Bone Joint Surg. Am.
, vol.96
, pp. 90-98
-
-
Vangsness, C.T.1
-
130
-
-
84913541357
-
Three-dimensional aggregates of mesenchymal stem cells: Cellular mechanisms, biological properties, and applications
-
Sart, S., Tsai, A. C., Li, Y. & Ma, T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng. Part B 20, 365-380 (2014
-
(2014)
Tissue Eng. Part B
, vol.20
, pp. 365-380
-
-
Sart, S.1
Tsai, A.C.2
Li, Y.3
Ma, T.4
-
131
-
-
84913594471
-
Preconditioning stem cells for in vivo delivery
-
Sart, S., Ma, T. & Li, Y. Preconditioning stem cells for in vivo delivery. Biores. Open Access 3, 137-149 (2014
-
(2014)
Biores. Open Access
, vol.3
, pp. 137-149
-
-
Sart, S.1
Ma, T.2
Li, Y.3
-
132
-
-
34547922822
-
Oxygen producing biomaterials for tissue regeneration
-
Harrison, B. S., Eberli, D., Lee, S. J., Atala, A. & Yoo, J. J. Oxygen producing biomaterials for tissue regeneration. Biomaterials 28, 4628-4634 (2007
-
(2007)
Biomaterials
, vol.28
, pp. 4628-4634
-
-
Harrison, B.S.1
Eberli, D.2
Lee, S.J.3
Atala, A.4
Yoo, J.J.5
-
133
-
-
57549105855
-
Oxygen generating scaffolds for enhancing engineered tissue survival
-
Oh, S. H., Ward, C. L., Atala, A., Yoo, J. J. & Harrison, B. S. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 30, 757-762 (2009
-
(2009)
Biomaterials
, vol.30
, pp. 757-762
-
-
Oh, S.H.1
Ward, C.L.2
Atala, A.3
Yoo, J.J.4
Harrison, B.S.5
-
134
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00512434?term=NCT00512434&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
135
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01206179?term=NCT01206179&rank=1 (2011
-
(2011)
US National Library of Medicine
-
-
-
136
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01429012?term=NCT01429012&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
137
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01788059?term=NCT01788059&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
138
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00250302?term=NCT00250302&rank=1 (2011
-
(2011)
US National Library of Medicine
-
-
-
139
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01435434?term=NCT01435434&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
140
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02177565?term=NCT02177565&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
141
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01626625?term=NCT01626625&rank=1 (2012
-
(2012)
US National Library of Medicine
-
-
-
142
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01842477?term=NCT01842477&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
143
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01725698?term=NCT01725698&rank=1 (2012
-
(2012)
US National Library of Medicine
-
-
-
144
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01958502?term=NCT01958502&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
145
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02065167?term=NCT02065167&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
146
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01700920?term=NCT01700920&rank=1 (2012
-
(2012)
US National Library of Medicine
-
-
-
147
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01544712?term=NCT01544712&rank=1 (2012
-
(2012)
US National Library of Medicine
-
-
-
148
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01605383?term=NCT01605383&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
149
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01210950?term=NCT01210950&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
150
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01552707?term=NCT01552707&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
151
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01389661?term=NCT01389661&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
152
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01603836?term=NCT01603836&rank=1 (2012
-
(2012)
US National Library of Medicine
-
-
-
153
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02172885?term=NCT02172885&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
154
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00186914?term=NCT00186914&rank=1 (2008
-
(2008)
US National Library of Medicine
-
-
-
155
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00001391?term=NCT00001391&rank=1 (2010
-
(2010)
US National Library of Medicine
-
-
-
156
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01207193?term=NCT01207193&rank=1 (2011
-
(2011)
US National Library of Medicine
-
-
-
157
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00221130?term=NCT00221130&rank=1 (2009
-
(2009)
US National Library of Medicine
-
-
-
158
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01532076?term=NCT01532076&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
159
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02140528?term=NCT02140528&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
160
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01643655?term=NCT01643655&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
161
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01501461?term=NCT01501461&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
-
162
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01739504?term=NCT01739504&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
163
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01585857?term=NCT01585857&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
164
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01885819?term=NCT01885819&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
165
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02241408?term=NCT02241408&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
166
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01885832?term=NCT01885832&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
167
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT02142842?term=NCT02142842&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
168
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01947348?term=NCT01947348&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
169
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01633892?term=NCT01633892&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
170
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01645722?term=NCT01645722&rank=1 (2014
-
(2014)
US National Library of Medicine
-
-
-
171
-
-
84861726854
-
-
ClinicalTrials.gov [online
-
US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT01218945?term=NCT01218945&rank=1 (2013
-
(2013)
US National Library of Medicine
-
-
|