메뉴 건너뛰기




Volumn 99, Issue 1, 2015, Pages 48-55

Rapamycin protection of livers from ischemia and reperfusion injury is dependent on both autophagy induction and mammalian target of rapamycin complex 2-akt activation

Author keywords

[No Author keywords available]

Indexed keywords

CHLOROQUINE; GAMMA INTERFERON INDUCIBLE PROTEIN 10; INTERLEUKIN 1BETA; INTERLEUKIN 6; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; PROTEIN KINASE B; RAPAMYCIN; TORIN 1; TRICIRIBINE; TUMOR NECROSIS FACTOR ALPHA; UNCLASSIFIED DRUG; 1-(4-(4-PROPIONYLPIPERAZIN-1-YL)-3-(TRIFLUOROMETHYL)PHENYL)-9-(QUINOLIN-3-YL)BENZO(H)(1,6)NAPHTHYRIDIN-2(1H)-ONE; MULTIPROTEIN COMPLEX; NAPHTHYRIDINE DERIVATIVE; PROTECTIVE AGENT; PROTEIN KINASE INHIBITOR; TARGET OF RAPAMYCIN KINASE; TOR COMPLEX 2;

EID: 84920155065     PISSN: 00411337     EISSN: None     Source Type: Journal    
DOI: 10.1097/TP.0000000000000476     Document Type: Article
Times cited : (54)

References (53)
  • 1
    • 81355138582 scopus 로고    scopus 로고
    • M-TOR inhibitors: What role in liver transplantation?
    • Kawahara T, Asthana S, Kneteman NM. m-TOR inhibitors: what role in liver transplantation? J Hepatol 2011;55:1441.
    • (2011) J Hepatol , vol.55 , pp. 1441
    • Kawahara, T.1    Asthana, S.2    Kneteman, N.M.3
  • 2
    • 84879597569 scopus 로고    scopus 로고
    • Liver transplantation: An appraisal of the present situation
    • Otto G. Liver transplantation: an appraisal of the present situation. Dig Dis 2013;31:164.
    • (2013) Dig Dis , vol.31 , pp. 164
    • Otto, G.1
  • 3
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274.
    • (2012) Cell , vol.149 , pp. 274
    • Laplante, M.1    Sabatini, D.M.2
  • 4
    • 72449147738 scopus 로고    scopus 로고
    • The multifunctional role of mTOR in innate immunity: Implications for transplant immunity
    • Saemann MD, Haidinger M, Hecking M, et al. The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant 2009;9:2655.
    • (2009) Am J Transplant , vol.9 , pp. 2655
    • Saemann, M.D.1    Haidinger, M.2    Hecking, M.3
  • 5
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem2009;284:8023.
    • (2009) J Biol Chem , vol.284 , pp. 8023
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3
  • 6
    • 54949109311 scopus 로고    scopus 로고
    • The TSC-mTOR signaling pathway regulates the innate inflammatory response
    • Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 2008;29:565.
    • (2008) Immunity , vol.29 , pp. 565
    • Weichhart, T.1    Costantino, G.2    Poglitsch, M.3
  • 7
    • 58149352480 scopus 로고    scopus 로고
    • Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells
    • Schmitz F, Heit A, Dreher S, et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur J Immunol 2008;38:2981.
    • (2008) Eur J Immunol , vol.38 , pp. 2981
    • Schmitz, F.1    Heit, A.2    Dreher, S.3
  • 8
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and mTOR in cellular energy homeostasis and drug targets
    • Inoki K, KimJ, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012;52:381.
    • (2012) Annu Rev Pharmacol Toxicol , vol.52 , pp. 381
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 9
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010;40:280.
    • (2010) Mol Cell , vol.40 , pp. 280
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 10
    • 77951915586 scopus 로고    scopus 로고
    • Autophagy during cardiac stress: Joys and frustrations of autophagy
    • Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol 2010;72:45.
    • (2010) Annu Rev Physiol , vol.72 , pp. 45
    • Gottlieb, R.A.1    Mentzer, R.M.2
  • 11
    • 84875892111 scopus 로고    scopus 로고
    • Autophagy as a stress-response and qualitycontrol mechanism: Implications for cell injury and human disease
    • Murrow L, Debnath J. Autophagy as a stress-response and qualitycontrol mechanism: implications for cell injury and human disease. Annu Rev Pathol 2013;8:105.
    • (2013) Annu Rev Pathol , vol.8 , pp. 105
    • Murrow, L.1    Debnath, J.2
  • 12
    • 84888395956 scopus 로고    scopus 로고
    • Dual role of chloroquine in liver ischemia reperfusion injury: Reduction of liver damage in early phase, but aggravation in late phase
    • Fang H, Liu A, Dahmen U, et al. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase. Cell Death Dis 2013;4:e694.
    • (2013) Cell Death Dis , vol.4 , pp. e694
    • Fang, H.1    Liu, A.2    Dahmen, U.3
  • 13
    • 80052873360 scopus 로고    scopus 로고
    • The functions of mTOR in ischemic diseases
    • Hwang SK, Kim HH. The functions of mTOR in ischemic diseases. BMB Rep 2011;44:506.
    • (2011) BMB Rep , vol.44 , pp. 506
    • Hwang, S.K.1    Kim, H.H.2
  • 14
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22:159.
    • (2006) Mol Cell , vol.22 , pp. 159
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 15
    • 0030273698 scopus 로고    scopus 로고
    • Beneficial effects of cyclosporine and rapamycin in small bowel ischemic injury
    • Puglisi RN, Strande L, Santos M, et al. Beneficial effects of cyclosporine and rapamycin in small bowel ischemic injury. J Surg Res 1996;65:115.
    • (1996) J Surg Res , vol.65 , pp. 115
    • Puglisi, R.N.1    Strande, L.2    Santos, M.3
  • 16
    • 0031902388 scopus 로고    scopus 로고
    • Immunosuppressants decrease neutrophil chemoattractant and attenuate ischemia/reperfusion injury of the liver in rats
    • Matsuda T, Yamaguchi Y, Matsumura F, et al. Immunosuppressants decrease neutrophil chemoattractant and attenuate ischemia/reperfusion injury of the liver in rats. J Trauma 1998;44:475.
    • (1998) J Trauma , vol.44 , pp. 475
    • Matsuda, T.1    Yamaguchi, Y.2    Matsumura, F.3
  • 17
    • 0141449212 scopus 로고    scopus 로고
    • Rapamycin preserves renal function compared with cyclosporine A after ischemia/reperfusion injury
    • Inman SR, Davis NA, Olson KM, et al. Rapamycin preserves renal function compared with cyclosporine A after ischemia/reperfusion injury. Urology 2003;62:750.
    • (2003) Urology , vol.62 , pp. 750
    • Inman, S.R.1    Davis, N.A.2    Olson, K.M.3
  • 18
    • 0034789534 scopus 로고    scopus 로고
    • Rapamycin impairs recovery from acute renal failure: Role of cell-cycle arrest and apoptosis of tubular cells
    • Lieberthal W, Fuhro R, Andry CC, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 2001;281:F693.
    • (2001) Am J Physiol Renal Physiol , vol.281 , pp. F693
    • Lieberthal, W.1    Fuhro, R.2    Andry, C.C.3
  • 19
    • 16644387897 scopus 로고    scopus 로고
    • Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: Differential modulation by rapamycin
    • Loverre A, Ditonno P, Crovace A, et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J Am Soc Nephrol 2004;15:2675.
    • (2004) J Am Soc Nephrol , vol.15 , pp. 2675
    • Loverre, A.1    Ditonno, P.2    Crovace, A.3
  • 20
    • 33748488439 scopus 로고    scopus 로고
    • Effect of rapamycin on renal ischemiareperfusion injury in mice
    • Lui SL, Chan KW, Tsang R, et al. Effect of rapamycin on renal ischemiareperfusion injury in mice. Transpl Int 2006;19:834.
    • (2006) Transpl Int , vol.19 , pp. 834
    • Lui, S.L.1    Chan, K.W.2    Tsang, R.3
  • 21
    • 33845674654 scopus 로고    scopus 로고
    • Sirolimus improves earlymicrocirculation, but impairs regeneration after pancreatic ischemia-reperfusion injury
    • Serr F, Lauer H, Armann B, et al. Sirolimus improves earlymicrocirculation, but impairs regeneration after pancreatic ischemia-reperfusion injury. Am J Transplant 2007;7:48.
    • (2007) Am J Transplant , vol.7 , pp. 48
    • Serr, F.1    Lauer, H.2    Armann, B.3
  • 22
    • 33746090919 scopus 로고    scopus 로고
    • Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes
    • Khan S, Salloum F, Das A, et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 2006;41:256.
    • (2006) J Mol Cell Cardiol , vol.41 , pp. 256
    • Khan, S.1    Salloum, F.2    Das, A.3
  • 23
    • 84869081320 scopus 로고    scopus 로고
    • Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway
    • Das A, Salloum FN, Durrant D, et al. Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol 2012;53:858.
    • (2012) J Mol Cell Cardiol , vol.53 , pp. 858
    • Das, A.1    Salloum, F.N.2    Durrant, D.3
  • 24
    • 0346848743 scopus 로고    scopus 로고
    • Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury
    • Fuller TF, Freise CE, Serkova N, et al. Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation 2003;76:1594.
    • (2003) Transplantation , vol.76 , pp. 1594
    • Fuller, T.F.1    Freise, C.E.2    Serkova, N.3
  • 25
    • 33750587035 scopus 로고    scopus 로고
    • The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury
    • Gonçalves GM, Cenedeze MA, Feitoza CQ, et al. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int 2006;70:1742.
    • (2006) Kidney Int , vol.70 , pp. 1742
    • Gonçalves, G.M.1    Cenedeze, M.A.2    Feitoza, C.Q.3
  • 26
    • 75449111396 scopus 로고    scopus 로고
    • Rapamycin inhibits cholangiocyte regeneration by blocking interleukin-6-induced activation of signal transducer and activator of transcription 3 after liver transplantation
    • Chen L-P, Zhang Q-H, Chen G, et al. Rapamycin inhibits cholangiocyte regeneration by blocking interleukin-6-induced activation of signal transducer and activator of transcription 3 after liver transplantation. Liver Transpl 2010;16:204.
    • (2010) Liver Transpl , vol.16 , pp. 204
    • Chen, L.-P.1    Zhang, Q.-H.2    Chen, G.3
  • 27
    • 56349126024 scopus 로고    scopus 로고
    • Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury
    • Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008;32:329.
    • (2008) Neurobiol Dis , vol.32 , pp. 329
    • Carloni, S.1    Buonocore, G.2    Balduini, W.3
  • 28
    • 84856457651 scopus 로고    scopus 로고
    • Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation
    • Carloni S, Buonocore G, Longini M, et al. Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation. Neuroscience 2012;203:160.
    • (2012) Neuroscience , vol.203 , pp. 160
    • Carloni, S.1    Buonocore, G.2    Longini, M.3
  • 29
    • 84870580153 scopus 로고    scopus 로고
    • Autophagy in proximal tubules protects against acute kidney injury
    • Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 2012;82:1271.
    • (2012) Kidney Int , vol.82 , pp. 1271
    • Jiang, M.1    Wei, Q.2    Dong, G.3
  • 30
    • 84869091726 scopus 로고    scopus 로고
    • Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury
    • Nakagawa S, Nishihara K, Inui K-i, et al. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur J Pharmacol 2012;696:143.
    • (2012) Eur J Pharmacol , vol.696 , pp. 143
    • Nakagawa, S.1    Nishihara, K.2    K-I, I.3
  • 31
    • 84891709303 scopus 로고    scopus 로고
    • Melatonin Inhibits mTOR-dependent autophagy during liver ischemia/reperfusion
    • Kang J-W, Cho H-I, Lee S-M. Melatonin Inhibits mTOR-dependent autophagy during liver ischemia/reperfusion. Cell Physiol Biochem 2014;33:23.
    • (2014) Cell Physiol Biochem , vol.33 , pp. 23
    • Kang, J.-W.1    Cho, H.-I.2    Lee, S.-M.3
  • 32
    • 84894560304 scopus 로고    scopus 로고
    • Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke
    • Li Q, Zhang T, Wang J, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 2014;444:182.
    • (2014) Biochem Biophys Res Commun , vol.444 , pp. 182
    • Li, Q.1    Zhang, T.2    Wang, J.3
  • 33
    • 84860210734 scopus 로고    scopus 로고
    • Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges
    • Przyklenk K, Dong Y, Undyala VV, et al. Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 2012;94:197.
    • (2012) Cardiovasc Res , vol.94 , pp. 197
    • Przyklenk, K.1    Dong, Y.2    Undyala, V.V.3
  • 34
  • 35
    • 34147168105 scopus 로고    scopus 로고
    • Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
    • Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007;100:914.
    • (2007) Circ Res , vol.100 , pp. 914
    • Matsui, Y.1    Takagi, H.2    Qu, X.3
  • 36
    • 78149469146 scopus 로고    scopus 로고
    • Autophagy in myocardium of murine hearts subjected to ischemia followed by reperfusion
    • French CJ, Taatjes DJ, Sobel BE. Autophagy in myocardium of murine hearts subjected to ischemia followed by reperfusion. Histochem Cell Biol 2010;134:519.
    • (2010) Histochem Cell Biol , vol.134 , pp. 519
    • French, C.J.1    Taatjes, D.J.2    Sobel, B.E.3
  • 37
    • 79955963895 scopus 로고    scopus 로고
    • At the core of survival: Autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury
    • Loos B, Genade S, Ellis B, et al. At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 2011;317:1437.
    • (2011) Exp Cell Res , vol.317 , pp. 1437
    • Loos, B.1    Genade, S.2    Ellis, B.3
  • 38
    • 43949096967 scopus 로고    scopus 로고
    • Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes
    • Kim JS, Nitta T, Mohuczy D, et al. Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 2008;47:1725.
    • (2008) Hepatology , vol.47 , pp. 1725
    • Kim, J.S.1    Nitta, T.2    Mohuczy, D.3
  • 39
    • 33749570745 scopus 로고    scopus 로고
    • Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes
    • Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006;281:29776.
    • (2006) J Biol Chem , vol.281 , pp. 29776
    • Hamacher-Brady, A.1    Brady, N.R.2    Gottlieb, R.A.3
  • 40
    • 61449176031 scopus 로고    scopus 로고
    • Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein
    • Gurusamy N, Lekli I, Gorbunov NV, et al. Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 2009;13:373.
    • (2009) J Cell Mol Med , vol.13 , pp. 373
    • Gurusamy, N.1    Lekli, I.2    Gorbunov, N.V.3
  • 41
    • 79956126271 scopus 로고    scopus 로고
    • Oxidative stress stimulates autophagic flux during ischemia/reperfusion
    • Hariharan N, Zhai P, Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 2011;14:2179.
    • (2011) Antioxid Redox Signal , vol.14 , pp. 2179
    • Hariharan, N.1    Zhai, P.2    Sadoshima, J.3
  • 42
    • 80052147341 scopus 로고    scopus 로고
    • Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion
    • Zhai P, Sciarretta S, Galeotti J, et al. Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011;109:502.
    • (2011) Circ Res. , vol.109 , pp. 502
    • Zhai, P.1    Sciarretta, S.2    Galeotti, J.3
  • 43
    • 84855975333 scopus 로고    scopus 로고
    • Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo
    • TanemuraM, Ohmura Y, Deguchi T, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant 2012;12:102.
    • (2012) Am J Transplant , vol.12 , pp. 102
    • Tanemura, M.1    Ohmura, Y.2    Deguchi, T.3
  • 44
    • 81855221944 scopus 로고    scopus 로고
    • Autophagy suppresses agedependent ischemia and reperfusion injury in livers of mice
    • Wang JH, Ahn IS, Fischer TD, et al. Autophagy suppresses agedependent ischemia and reperfusion injury in livers of mice. Gastroenterology 2011;141:2188.
    • (2011) Gastroenterology , vol.141 , pp. 2188
    • Wang, J.H.1    Ahn, I.S.2    Fischer, T.D.3
  • 45
    • 84155194923 scopus 로고    scopus 로고
    • Activation of autophagy protects against acetaminophen-induced hepatotoxicity
    • Ni HM, Bockus A, Boggess N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 2012;55:222.
    • (2012) Hepatology , vol.55 , pp. 222
    • Ni, H.M.1    Bockus, A.2    Boggess, N.3
  • 46
    • 84887169599 scopus 로고    scopus 로고
    • Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage
    • Volkers M, Konstandin MH, Doroudgar S, et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 2013;128:2132.
    • (2013) Circulation , vol.128 , pp. 2132
    • Volkers, M.1    Konstandin, M.H.2    Doroudgar, S.3
  • 48
    • 33748177384 scopus 로고    scopus 로고
    • Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway
    • Zhu M, Feng J, Lucchinetti E, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res 2006;72:152.
    • (2006) Cardiovasc Res , vol.72 , pp. 152
    • Zhu, M.1    Feng, J.2    Lucchinetti, E.3
  • 49
    • 84872140886 scopus 로고    scopus 로고
    • PTEN-mediated Akt/beta-catenin/ Foxo1 signaling regulates innate immune responses in mouse liver ischemia/reperfusion injury
    • Kamo N, Ke B, Busuttil RW, et al. PTEN-mediated Akt/beta-catenin/ Foxo1 signaling regulates innate immune responses in mouse liver ischemia/reperfusion injury. Hepatology 2013;57:289.
    • (2013) Hepatology , vol.57 , pp. 289
    • Kamo, N.1    Ke, B.2    Busuttil, R.W.3
  • 50
    • 75749105049 scopus 로고    scopus 로고
    • MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien LA, Carriere A, Moreau J, et al. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 2010;30:908.
    • (2010) Mol Cell Biol , vol.30 , pp. 908
    • Julien, L.A.1    Carriere, A.2    Moreau, J.3
  • 51
    • 0036677208 scopus 로고    scopus 로고
    • CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection
    • Shen XD, Ke B, Zhai Y, et al. CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation 2002;74:315.
    • (2002) Transplantation , vol.74 , pp. 315
    • Shen, X.D.1    Ke, B.2    Zhai, Y.3
  • 52
    • 0027319824 scopus 로고
    • Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine
    • Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 1993;55:1265.
    • (1993) Transplantation , vol.55 , pp. 1265
    • Suzuki, S.1    Toledo-Pereyra, L.H.2    Rodriguez, F.J.3
  • 53
    • 38649097193 scopus 로고    scopus 로고
    • CXCL10 regulates liver innate immune response against ischemia and reperfusion injury
    • Zhai Y, Shen XD, Gao F, et al. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology 2008;47:207.
    • (2008) Hepatology , vol.47 , pp. 207
    • Zhai, Y.1    Shen, X.D.2    Gao, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.