메뉴 건너뛰기




Volumn 33, Issue 1, 2015, Pages 240-252

Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: An approach for treating bone disease in diabetes

Author keywords

Adiponectin; Bone regeneration; Cell mobilization; Mesenchymal stem cells

Indexed keywords

ADIPONECTIN; ADIPONECTIN RECEPTOR; CASEIN KINASE II; CHEMOKINE RECEPTOR CXCR4; LEUCINE ZIPPER CONTAINING 1; MESSENGER RNA; PLECKSTRIN; PROTEIN; SMAD1 PROTEIN; SMAD5 PROTEIN; SMAD8 PROTEIN; STROMAL CELL DERIVED FACTOR 1; UNCLASSIFIED DRUG; CXCL12 PROTEIN, MOUSE; CXCR4 PROTEIN, MOUSE;

EID: 84919421867     PISSN: 10665099     EISSN: 15494918     Source Type: Journal    
DOI: 10.1002/stem.1844     Document Type: Article
Times cited : (73)

References (59)
  • 1
    • 84892610064 scopus 로고    scopus 로고
    • The bone marrow niche for haematopoietic stem cells
    • Morrison SJ, Scadden DT,. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327-334.
    • (2014) Nature , vol.505 , pp. 327-334
    • Morrison, S.J.1    Scadden, D.T.2
  • 2
    • 33646435309 scopus 로고    scopus 로고
    • The stem cell niches in bone
    • Yin T,. The stem cell niches in bone. J Clin Invest 2006; 116: 1195-1201.
    • (2006) J Clin Invest , vol.116 , pp. 1195-1201
    • Yin, T.1
  • 3
    • 77955646193 scopus 로고    scopus 로고
    • Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    • Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829-834.
    • (2010) Nature , vol.466 , pp. 829-834
    • Méndez-Ferrer, S.1    Michurina, T.V.2    Ferraro, F.3
  • 4
    • 79952724283 scopus 로고    scopus 로고
    • The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in
    • Ehninger A, Trumpp A,. The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in. J Exp Med 2011; 208: 421-428.
    • (2011) J Exp Med , vol.208 , pp. 421-428
    • Ehninger, A.1    Trumpp, A.2
  • 5
    • 67650504733 scopus 로고    scopus 로고
    • Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
    • Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460: 259-263.
    • (2009) Nature , vol.460 , pp. 259-263
    • Naveiras, O.1    Nardi, V.2    Wenzel, P.L.3
  • 6
    • 33947250691 scopus 로고    scopus 로고
    • Identification of adiponectin as a novel hemopoietic stem cell growth factor
    • DiMascio L, Voermans C, Uqoezwa M, et al. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 2007; 178: 3511-3520.
    • (2007) J Immunol , vol.178 , pp. 3511-3520
    • Dimascio, L.1    Voermans, C.2    Uqoezwa, M.3
  • 7
    • 39749164920 scopus 로고    scopus 로고
    • Haematopoietic stem cell release is regulated by circadian oscillations
    • Mendez-Ferrer S, Lucas D, Battista M, et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442-447.
    • (2008) Nature , vol.452 , pp. 442-447
    • Mendez-Ferrer, S.1    Lucas, D.2    Battista, M.3
  • 8
    • 0035976526 scopus 로고    scopus 로고
    • Physiological migration of hematopoietic stem and progenitor cells
    • Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933-1936.
    • (2001) Science , vol.294 , pp. 1933-1936
    • Wright, D.E.1    Wagers, A.J.2    Gulati, A.P.3
  • 9
    • 0036302147 scopus 로고    scopus 로고
    • G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
    • Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687-694.
    • (2002) Nat Immunol , vol.3 , pp. 687-694
    • Petit, I.1    Szyper-Kravitz, M.2    Nagler, A.3
  • 10
    • 31044450303 scopus 로고    scopus 로고
    • Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
    • Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407-421.
    • (2006) Cell , vol.124 , pp. 407-421
    • Katayama, Y.1    Battista, M.2    Kao, W.M.3
  • 11
    • 80053996113 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue
    • Deng J, Zou ZM, Zhou TL, et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol Sci 2011; 32: 641-651.
    • (2011) Neurol Sci , vol.32 , pp. 641-651
    • Deng, J.1    Zou, Z.M.2    Zhou, T.L.3
  • 12
    • 84867919298 scopus 로고    scopus 로고
    • Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling
    • Wan M, Li C, Zhen G, et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 2012; 30: 2498-2511.
    • (2012) Stem Cells , vol.30 , pp. 2498-2511
    • Wan, M.1    Li, C.2    Zhen, G.3
  • 13
    • 61649090805 scopus 로고    scopus 로고
    • Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model
    • Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 2009; 60: 813-823.
    • (2009) Arthritis Rheum , vol.60 , pp. 813-823
    • Kitaori, T.1    Ito, H.2    Schwarz, E.M.3
  • 14
    • 38349073636 scopus 로고    scopus 로고
    • Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway
    • Otsuru S, Tamai K, Yamazaki T, et al. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells 2008; 26: 223-234.
    • (2008) Stem Cells , vol.26 , pp. 223-234
    • Otsuru, S.1    Tamai, K.2    Yamazaki, T.3
  • 16
    • 84921358001 scopus 로고    scopus 로고
    • The bone-fat interface: Basic and clinical implications of marrow adiposity
    • Feb 19. pii: S2213-8587(14)70007-5. doi: 10.1016/S2213-8587(14)70007-5. [Epub ahead of print]
    • Devlin MJ, Rosen CJ,. The bone-fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol 2014 Feb 19. pii: S2213-8587(14)70007-5. doi: 10.1016/S2213-8587(14)70007-5. [Epub ahead of print].
    • (2014) Lancet Diabetes Endocrinol
    • Devlin, M.J.1    Rosen, C.J.2
  • 18
    • 84865273068 scopus 로고    scopus 로고
    • Three-dimensional in vitro tri-culture platform to investigate effects of crosstalk between mesenchymal stem cells, osteoblasts, and adipocytes
    • Hammoudi TM, Rivet CA, Kemp ML, et al. Three-dimensional in vitro tri-culture platform to investigate effects of crosstalk between mesenchymal stem cells, osteoblasts, and adipocytes. Tissue Eng Part A 2012; 18: 1686-1697.
    • (2012) Tissue Eng Part A , vol.18 , pp. 1686-1697
    • Hammoudi, T.M.1    Rivet, C.A.2    Kemp, M.L.3
  • 19
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
    • Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-946.
    • (2001) Nat Med , vol.7 , pp. 941-946
    • Yamauchi, T.1    Kamon, J.2    Waki, H.3
  • 20
    • 84876453239 scopus 로고    scopus 로고
    • Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy
    • Padmalayam I, Suto M,. Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy. Curr Pharm Des 2013; 19: 5755-5763.
    • (2013) Curr Pharm des , vol.19 , pp. 5755-5763
    • Padmalayam, I.1    Suto, M.2
  • 21
    • 84866054662 scopus 로고    scopus 로고
    • Adiponectin: Anti-inflammatory and cardioprotective effects
    • Villarreal-Molina MT, Antuna-Puente B,. Adiponectin: Anti-inflammatory and cardioprotective effects. Biochimie 2012; 94: 2143-2149.
    • (2012) Biochimie , vol.94 , pp. 2143-2149
    • Villarreal-Molina, M.T.1    Antuna-Puente, B.2
  • 22
    • 18044394024 scopus 로고    scopus 로고
    • Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast
    • Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005; 331: 520-526.
    • (2005) Biochem Biophys Res Commun , vol.331 , pp. 520-526
    • Oshima, K.1    Nampei, A.2    Matsuda, M.3
  • 23
  • 24
    • 70349974675 scopus 로고    scopus 로고
    • Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells
    • Lee HW, Kim SY, Kim AY, et al. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 2009; 27: 2254-2262.
    • (2009) Stem Cells , vol.27 , pp. 2254-2262
    • Lee, H.W.1    Kim, S.Y.2    Kim, A.Y.3
  • 25
    • 84902660702 scopus 로고    scopus 로고
    • Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice
    • Wu Y, Tu Q, Valverde P, et al. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice. Am J Physiol Endocrinol Metab 2014; 306: E1418-1430.
    • (2014) Am J Physiol Endocrinol Metab , vol.306 , pp. E1418-E1430
    • Wu, Y.1    Tu, Q.2    Valverde, P.3
  • 26
    • 42749088830 scopus 로고    scopus 로고
    • Adiponectin promotes endothelial progenitor cell number and function
    • Shibata R, Skurk C, Ouchi N, et al. Adiponectin promotes endothelial progenitor cell number and function. FEBS Lett 2008; 582: 1607-1612.
    • (2008) FEBS Lett , vol.582 , pp. 1607-1612
    • Shibata, R.1    Skurk, C.2    Ouchi, N.3
  • 27
    • 78049279362 scopus 로고    scopus 로고
    • Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway
    • Chang J, Li Y, Huang Y, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 2010; 59: 2949-2959.
    • (2010) Diabetes , vol.59 , pp. 2949-2959
    • Chang, J.1    Li, Y.2    Huang, Y.3
  • 28
    • 84883276974 scopus 로고    scopus 로고
    • Adiponectin promotes the migration of circulating angiogenic cells through p38-mediated induction of the CXCR4 receptor
    • Adams V, Heiker JT, Höllriegel R, et al. Adiponectin promotes the migration of circulating angiogenic cells through p38-mediated induction of the CXCR4 receptor. Int J Cardiol 2013; 167: 2039-2046.
    • (2013) Int J Cardiol , vol.167 , pp. 2039-2046
    • Adams, V.1    Heiker, J.T.2    Höllriegel, R.3
  • 29
    • 84862101304 scopus 로고    scopus 로고
    • Globular adiponectin activates motility and regenerative traits of muscle satellite cells
    • Bellusci S, Fiaschi T, Giannoni E, et al. Globular adiponectin activates motility and regenerative traits of muscle satellite cells. PLoS One 2012; 7: e34782.
    • (2012) PLoS One , vol.7 , pp. e34782
    • Bellusci, S.1    Fiaschi, T.2    Giannoni, E.3
  • 30
    • 84892912997 scopus 로고    scopus 로고
    • Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts
    • Dadson K, Chasiotis H, Wannaiampikul S, et al. Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts. J Cell Biochem 2014; 115: 785-793.
    • (2014) J Cell Biochem , vol.115 , pp. 785-793
    • Dadson, K.1    Chasiotis, H.2    Wannaiampikul, S.3
  • 31
    • 84899682999 scopus 로고    scopus 로고
    • Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3beta/beta-Catenin signaling in mice
    • Lin YY, Chen CY, Chuang TY, et al. Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3beta/beta-Catenin signaling in mice. Bone 2014; 64: 147-154.
    • (2014) Bone , vol.64 , pp. 147-154
    • Lin, Y.Y.1    Chen, C.Y.2    Chuang, T.Y.3
  • 32
    • 23944517324 scopus 로고    scopus 로고
    • Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway
    • Luo XH, Guo LJ, Yuan LQ, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 2005; 309: 99-109.
    • (2005) Exp Cell Res , vol.309 , pp. 99-109
    • Luo, X.H.1    Guo, L.J.2    Yuan, L.Q.3
  • 33
    • 84878783089 scopus 로고    scopus 로고
    • Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1
    • Kajimura D, Lee HW, Riley KJ, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 2013; 17: 901-915.
    • (2013) Cell Metab , vol.17 , pp. 901-915
    • Kajimura, D.1    Lee, H.W.2    Riley, K.J.3
  • 34
    • 77953644936 scopus 로고    scopus 로고
    • Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway
    • Huang CY, Lee CY, Chen MY, et al. Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway. J Cell Physiol 2010; 224: 475-483.
    • (2010) J Cell Physiol , vol.224 , pp. 475-483
    • Huang, C.Y.1    Lee, C.Y.2    Chen, M.Y.3
  • 35
    • 0037494960 scopus 로고    scopus 로고
    • Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
    • Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-769.
    • (2003) Nature , vol.423 , pp. 762-769
    • Yamauchi, T.1    Kamon, J.2    Ito, Y.3
  • 36
    • 42049101804 scopus 로고    scopus 로고
    • AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus
    • Coope A, Milanski M, Araujo EP, et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 2008; 582: 1471-1476.
    • (2008) FEBS Lett , vol.582 , pp. 1471-1476
    • Coope, A.1    Milanski, M.2    Araujo, E.P.3
  • 37
    • 33744972277 scopus 로고    scopus 로고
    • APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
    • Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 2006; 8: 516-523.
    • (2006) Nat Cell Biol , vol.8 , pp. 516-523
    • Mao, X.1    Kikani, C.K.2    Riojas, R.A.3
  • 38
    • 56949089685 scopus 로고    scopus 로고
    • Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1
    • Xu Y, Wang N, Ling F, et al. Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1. Biochem Biophys Res Commun 2009; 378: 95-98.
    • (2009) Biochem Biophys Res Commun , vol.378 , pp. 95-98
    • Xu, Y.1    Wang, N.2    Ling, F.3
  • 39
    • 75749115950 scopus 로고    scopus 로고
    • ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling
    • Charlton HK, Webster J, Kruger S, et al. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling. Biochem Biophys Res Commun 2010; 392: 234-239.
    • (2010) Biochem Biophys Res Commun , vol.392 , pp. 234-239
    • Charlton, H.K.1    Webster, J.2    Kruger, S.3
  • 40
    • 62749096761 scopus 로고    scopus 로고
    • Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling
    • Heiker JT, Wottawah CM, Juhl C, et al. Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling. Cell Signal 2009; 21: 936-942.
    • (2009) Cell Signal , vol.21 , pp. 936-942
    • Heiker, J.T.1    Wottawah, C.M.2    Juhl, C.3
  • 41
    • 84855229280 scopus 로고    scopus 로고
    • Adiponectin receptor 1 interacts with both subunits of protein kinase CK2
    • Juhl C, Morl K, Beck-Sickinger AG,. Adiponectin receptor 1 interacts with both subunits of protein kinase CK2. Mol Cell Biochem 2011; 356: 185-189.
    • (2011) Mol Cell Biochem , vol.356 , pp. 185-189
    • Juhl, C.1    Morl, K.2    Beck-Sickinger, A.G.3
  • 42
    • 80054035544 scopus 로고    scopus 로고
    • Diabetes impairs hematopoietic stem cell mobilization by altering niche function
    • Ferraro F, Lymperi S, Mendez-Ferrer S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 2011; 3: 104ra101.
    • (2011) Sci Transl Med , vol.3 , pp. 104ra101
    • Ferraro, F.1    Lymperi, S.2    Mendez-Ferrer, S.3
  • 43
    • 84855412101 scopus 로고    scopus 로고
    • Diabetic stem-cell "mobilopathy"
    • DiPersio JF,. Diabetic stem-cell "mobilopathy". N Engl J Med 2011; 365: 2536-2538.
    • (2011) N Engl J Med , vol.365 , pp. 2536-2538
    • Dipersio, J.F.1
  • 44
    • 84875425226 scopus 로고    scopus 로고
    • Diabetes impairs stem cell and proangiogenic cell mobilization in humans
    • Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 2013; 36: 943-949.
    • (2013) Diabetes Care , vol.36 , pp. 943-949
    • Fadini, G.P.1    Albiero, M.2    Vigili De Kreutzenberg, S.3
  • 45
    • 77955389023 scopus 로고    scopus 로고
    • Decreased circulating progenitor cell number and failed mechanisms of stromal cell-derived factor-1 mediated bone marrow mobilization impair diabetic tissue repair
    • Tepper OM, Carr J, Allen RJ, et al. Decreased circulating progenitor cell number and failed mechanisms of stromal cell-derived factor-1 mediated bone marrow mobilization impair diabetic tissue repair. Diabetes 2010; 59: 1974-1983.
    • (2010) Diabetes , vol.59 , pp. 1974-1983
    • Tepper, O.M.1    Carr, J.2    Allen, R.J.3
  • 46
    • 84897895811 scopus 로고    scopus 로고
    • Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1
    • Albiero M, Poncina N, Tjwa M, et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 2014; 63: 1353-1365.
    • (2014) Diabetes , vol.63 , pp. 1353-1365
    • Albiero, M.1    Poncina, N.2    Tjwa, M.3
  • 47
    • 84897904635 scopus 로고    scopus 로고
    • In vivo assessment of bone quality in postmenopausal women with type 2 diabetes
    • Farr JN, Drake MT, Amin S, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 2014; 29: 787-795.
    • (2014) J Bone Miner Res , vol.29 , pp. 787-795
    • Farr, J.N.1    Drake, M.T.2    Amin, S.3
  • 48
    • 84866162213 scopus 로고    scopus 로고
    • Circulating osteogenic precursor cells in type 2 diabetes mellitus
    • Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97: 3240-3250.
    • (2012) J Clin Endocrinol Metab , vol.97 , pp. 3240-3250
    • Manavalan, J.S.1    Cremers, S.2    Dempster, D.W.3
  • 49
    • 0034999667 scopus 로고    scopus 로고
    • Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
    • Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930-1935.
    • (2001) J Clin Endocrinol Metab , vol.86 , pp. 1930-1935
    • Weyer, C.1    Funahashi, T.2    Tanaka, S.3
  • 50
    • 0034096988 scopus 로고    scopus 로고
    • Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients
    • Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595-1599.
    • (2000) Arterioscler Thromb Vasc Biol , vol.20 , pp. 1595-1599
    • Hotta, K.1    Funahashi, T.2    Arita, Y.3
  • 51
    • 79953310334 scopus 로고    scopus 로고
    • Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1
    • Tu Q, Zhang J, Dong LQ, et al. Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J Biol Chem 2011; 286: 12542-12553.
    • (2011) J Biol Chem , vol.286 , pp. 12542-12553
    • Tu, Q.1    Zhang, J.2    Dong, L.Q.3
  • 52
    • 79956140280 scopus 로고    scopus 로고
    • Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs
    • Ye JH, Xu YJ, Gao J, et al. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32: 5065-5076.
    • (2011) Biomaterials , vol.32 , pp. 5065-5076
    • Ye, J.H.1    Xu, Y.J.2    Gao, J.3
  • 53
    • 35348852485 scopus 로고    scopus 로고
    • Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone
    • Tu Q, Valverde P, Li S, et al. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 2007; 13: 2431-2440.
    • (2007) Tissue Eng , vol.13 , pp. 2431-2440
    • Tu, Q.1    Valverde, P.2    Li, S.3
  • 54
    • 84868251879 scopus 로고    scopus 로고
    • NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts
    • Wang B, Yang Y, Liu L, et al. NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts. Bone 2013; 52: 268-277.
    • (2013) Bone , vol.52 , pp. 268-277
    • Wang, B.1    Yang, Y.2    Liu, L.3
  • 55
    • 84555195940 scopus 로고    scopus 로고
    • Osteoblast isolation from murine calvaria and long bones
    • Bakker AD, Klein-Nulend J,. Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 2012; 816: 19-29.
    • (2012) Methods Mol Biol , vol.816 , pp. 19-29
    • Bakker, A.D.1    Klein-Nulend, J.2
  • 56
    • 79960633240 scopus 로고    scopus 로고
    • Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1
    • Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Mine Res 2011; 26: 1953-1963.
    • (2011) J Bone Mine Res , vol.26 , pp. 1953-1963
    • Zhang, J.1    Tu, Q.2    Bonewald, L.F.3
  • 57
    • 79960663308 scopus 로고    scopus 로고
    • Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development
    • Zhu W, Liang G, Huang Z, et al. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 2011; 286: 26794-26805.
    • (2011) J Biol Chem , vol.286 , pp. 26794-26805
    • Zhu, W.1    Liang, G.2    Huang, Z.3
  • 58
    • 77955696940 scopus 로고    scopus 로고
    • Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling
    • Bragdon B, Thinakaran S, Moseychuk O, et al. Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling. Biophys J 2010; 99: 897-904.
    • (2010) Biophys J , vol.99 , pp. 897-904
    • Bragdon, B.1    Thinakaran, S.2    Moseychuk, O.3
  • 59
    • 84891371227 scopus 로고    scopus 로고
    • Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes
    • Moseychuk O, Akkiraju H, Dutta J, et al. Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes. J Cell Commun Signal 2013; 7: 265-278.
    • (2013) J Cell Commun Signal , vol.7 , pp. 265-278
    • Moseychuk, O.1    Akkiraju, H.2    Dutta, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.