-
1
-
-
84892610064
-
The bone marrow niche for haematopoietic stem cells
-
Morrison SJ, Scadden DT,. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327-334.
-
(2014)
Nature
, vol.505
, pp. 327-334
-
-
Morrison, S.J.1
Scadden, D.T.2
-
2
-
-
33646435309
-
The stem cell niches in bone
-
Yin T,. The stem cell niches in bone. J Clin Invest 2006; 116: 1195-1201.
-
(2006)
J Clin Invest
, vol.116
, pp. 1195-1201
-
-
Yin, T.1
-
3
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829-834.
-
(2010)
Nature
, vol.466
, pp. 829-834
-
-
Méndez-Ferrer, S.1
Michurina, T.V.2
Ferraro, F.3
-
4
-
-
79952724283
-
The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in
-
Ehninger A, Trumpp A,. The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in. J Exp Med 2011; 208: 421-428.
-
(2011)
J Exp Med
, vol.208
, pp. 421-428
-
-
Ehninger, A.1
Trumpp, A.2
-
5
-
-
67650504733
-
Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
-
Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460: 259-263.
-
(2009)
Nature
, vol.460
, pp. 259-263
-
-
Naveiras, O.1
Nardi, V.2
Wenzel, P.L.3
-
6
-
-
33947250691
-
Identification of adiponectin as a novel hemopoietic stem cell growth factor
-
DiMascio L, Voermans C, Uqoezwa M, et al. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 2007; 178: 3511-3520.
-
(2007)
J Immunol
, vol.178
, pp. 3511-3520
-
-
Dimascio, L.1
Voermans, C.2
Uqoezwa, M.3
-
7
-
-
39749164920
-
Haematopoietic stem cell release is regulated by circadian oscillations
-
Mendez-Ferrer S, Lucas D, Battista M, et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442-447.
-
(2008)
Nature
, vol.452
, pp. 442-447
-
-
Mendez-Ferrer, S.1
Lucas, D.2
Battista, M.3
-
8
-
-
0035976526
-
Physiological migration of hematopoietic stem and progenitor cells
-
Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933-1936.
-
(2001)
Science
, vol.294
, pp. 1933-1936
-
-
Wright, D.E.1
Wagers, A.J.2
Gulati, A.P.3
-
9
-
-
0036302147
-
G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4
-
Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687-694.
-
(2002)
Nat Immunol
, vol.3
, pp. 687-694
-
-
Petit, I.1
Szyper-Kravitz, M.2
Nagler, A.3
-
10
-
-
31044450303
-
Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
-
Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407-421.
-
(2006)
Cell
, vol.124
, pp. 407-421
-
-
Katayama, Y.1
Battista, M.2
Kao, W.M.3
-
11
-
-
80053996113
-
Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue
-
Deng J, Zou ZM, Zhou TL, et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol Sci 2011; 32: 641-651.
-
(2011)
Neurol Sci
, vol.32
, pp. 641-651
-
-
Deng, J.1
Zou, Z.M.2
Zhou, T.L.3
-
12
-
-
84867919298
-
Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling
-
Wan M, Li C, Zhen G, et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 2012; 30: 2498-2511.
-
(2012)
Stem Cells
, vol.30
, pp. 2498-2511
-
-
Wan, M.1
Li, C.2
Zhen, G.3
-
13
-
-
61649090805
-
Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model
-
Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 2009; 60: 813-823.
-
(2009)
Arthritis Rheum
, vol.60
, pp. 813-823
-
-
Kitaori, T.1
Ito, H.2
Schwarz, E.M.3
-
14
-
-
38349073636
-
Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway
-
Otsuru S, Tamai K, Yamazaki T, et al. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells 2008; 26: 223-234.
-
(2008)
Stem Cells
, vol.26
, pp. 223-234
-
-
Otsuru, S.1
Tamai, K.2
Yamazaki, T.3
-
15
-
-
84919441806
-
-
StemBook, ed. Cambridge, MA: The Stem Cell Research Community, StemBook
-
Lapid K, Glait-Santar C, Gur-Cohen S, et al. Egress and mobilization of hematopoietic stem and progenitor cells: A dynamic multi-facet process. StemBook, ed. Cambridge, MA: The Stem Cell Research Community, StemBook, 2012: 1-37.
-
(2012)
Egress and Mobilization of Hematopoietic Stem and Progenitor Cells: A Dynamic Multi-facet Process
, pp. 1-37
-
-
Lapid, K.1
Glait-Santar, C.2
Gur-Cohen, S.3
-
16
-
-
84921358001
-
The bone-fat interface: Basic and clinical implications of marrow adiposity
-
Feb 19. pii: S2213-8587(14)70007-5. doi: 10.1016/S2213-8587(14)70007-5. [Epub ahead of print]
-
Devlin MJ, Rosen CJ,. The bone-fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol 2014 Feb 19. pii: S2213-8587(14)70007-5. doi: 10.1016/S2213-8587(14)70007-5. [Epub ahead of print].
-
(2014)
Lancet Diabetes Endocrinol
-
-
Devlin, M.J.1
Rosen, C.J.2
-
18
-
-
84865273068
-
Three-dimensional in vitro tri-culture platform to investigate effects of crosstalk between mesenchymal stem cells, osteoblasts, and adipocytes
-
Hammoudi TM, Rivet CA, Kemp ML, et al. Three-dimensional in vitro tri-culture platform to investigate effects of crosstalk between mesenchymal stem cells, osteoblasts, and adipocytes. Tissue Eng Part A 2012; 18: 1686-1697.
-
(2012)
Tissue Eng Part A
, vol.18
, pp. 1686-1697
-
-
Hammoudi, T.M.1
Rivet, C.A.2
Kemp, M.L.3
-
19
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-946.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
-
20
-
-
84876453239
-
Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy
-
Padmalayam I, Suto M,. Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy. Curr Pharm Des 2013; 19: 5755-5763.
-
(2013)
Curr Pharm des
, vol.19
, pp. 5755-5763
-
-
Padmalayam, I.1
Suto, M.2
-
21
-
-
84866054662
-
Adiponectin: Anti-inflammatory and cardioprotective effects
-
Villarreal-Molina MT, Antuna-Puente B,. Adiponectin: Anti-inflammatory and cardioprotective effects. Biochimie 2012; 94: 2143-2149.
-
(2012)
Biochimie
, vol.94
, pp. 2143-2149
-
-
Villarreal-Molina, M.T.1
Antuna-Puente, B.2
-
22
-
-
18044394024
-
Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast
-
Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005; 331: 520-526.
-
(2005)
Biochem Biophys Res Commun
, vol.331
, pp. 520-526
-
-
Oshima, K.1
Nampei, A.2
Matsuda, M.3
-
24
-
-
70349974675
-
Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells
-
Lee HW, Kim SY, Kim AY, et al. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 2009; 27: 2254-2262.
-
(2009)
Stem Cells
, vol.27
, pp. 2254-2262
-
-
Lee, H.W.1
Kim, S.Y.2
Kim, A.Y.3
-
25
-
-
84902660702
-
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice
-
Wu Y, Tu Q, Valverde P, et al. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice. Am J Physiol Endocrinol Metab 2014; 306: E1418-1430.
-
(2014)
Am J Physiol Endocrinol Metab
, vol.306
, pp. E1418-E1430
-
-
Wu, Y.1
Tu, Q.2
Valverde, P.3
-
26
-
-
42749088830
-
Adiponectin promotes endothelial progenitor cell number and function
-
Shibata R, Skurk C, Ouchi N, et al. Adiponectin promotes endothelial progenitor cell number and function. FEBS Lett 2008; 582: 1607-1612.
-
(2008)
FEBS Lett
, vol.582
, pp. 1607-1612
-
-
Shibata, R.1
Skurk, C.2
Ouchi, N.3
-
27
-
-
78049279362
-
Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway
-
Chang J, Li Y, Huang Y, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 2010; 59: 2949-2959.
-
(2010)
Diabetes
, vol.59
, pp. 2949-2959
-
-
Chang, J.1
Li, Y.2
Huang, Y.3
-
28
-
-
84883276974
-
Adiponectin promotes the migration of circulating angiogenic cells through p38-mediated induction of the CXCR4 receptor
-
Adams V, Heiker JT, Höllriegel R, et al. Adiponectin promotes the migration of circulating angiogenic cells through p38-mediated induction of the CXCR4 receptor. Int J Cardiol 2013; 167: 2039-2046.
-
(2013)
Int J Cardiol
, vol.167
, pp. 2039-2046
-
-
Adams, V.1
Heiker, J.T.2
Höllriegel, R.3
-
29
-
-
84862101304
-
Globular adiponectin activates motility and regenerative traits of muscle satellite cells
-
Bellusci S, Fiaschi T, Giannoni E, et al. Globular adiponectin activates motility and regenerative traits of muscle satellite cells. PLoS One 2012; 7: e34782.
-
(2012)
PLoS One
, vol.7
, pp. e34782
-
-
Bellusci, S.1
Fiaschi, T.2
Giannoni, E.3
-
30
-
-
84892912997
-
Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts
-
Dadson K, Chasiotis H, Wannaiampikul S, et al. Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts. J Cell Biochem 2014; 115: 785-793.
-
(2014)
J Cell Biochem
, vol.115
, pp. 785-793
-
-
Dadson, K.1
Chasiotis, H.2
Wannaiampikul, S.3
-
31
-
-
84899682999
-
Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3beta/beta-Catenin signaling in mice
-
Lin YY, Chen CY, Chuang TY, et al. Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3beta/beta-Catenin signaling in mice. Bone 2014; 64: 147-154.
-
(2014)
Bone
, vol.64
, pp. 147-154
-
-
Lin, Y.Y.1
Chen, C.Y.2
Chuang, T.Y.3
-
32
-
-
23944517324
-
Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway
-
Luo XH, Guo LJ, Yuan LQ, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 2005; 309: 99-109.
-
(2005)
Exp Cell Res
, vol.309
, pp. 99-109
-
-
Luo, X.H.1
Guo, L.J.2
Yuan, L.Q.3
-
33
-
-
84878783089
-
Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1
-
Kajimura D, Lee HW, Riley KJ, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 2013; 17: 901-915.
-
(2013)
Cell Metab
, vol.17
, pp. 901-915
-
-
Kajimura, D.1
Lee, H.W.2
Riley, K.J.3
-
34
-
-
77953644936
-
Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway
-
Huang CY, Lee CY, Chen MY, et al. Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway. J Cell Physiol 2010; 224: 475-483.
-
(2010)
J Cell Physiol
, vol.224
, pp. 475-483
-
-
Huang, C.Y.1
Lee, C.Y.2
Chen, M.Y.3
-
35
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-769.
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Ito, Y.3
-
36
-
-
42049101804
-
AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus
-
Coope A, Milanski M, Araujo EP, et al. AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 2008; 582: 1471-1476.
-
(2008)
FEBS Lett
, vol.582
, pp. 1471-1476
-
-
Coope, A.1
Milanski, M.2
Araujo, E.P.3
-
37
-
-
33744972277
-
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
-
Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 2006; 8: 516-523.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 516-523
-
-
Mao, X.1
Kikani, C.K.2
Riojas, R.A.3
-
38
-
-
56949089685
-
Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1
-
Xu Y, Wang N, Ling F, et al. Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1. Biochem Biophys Res Commun 2009; 378: 95-98.
-
(2009)
Biochem Biophys Res Commun
, vol.378
, pp. 95-98
-
-
Xu, Y.1
Wang, N.2
Ling, F.3
-
39
-
-
75749115950
-
ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling
-
Charlton HK, Webster J, Kruger S, et al. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling. Biochem Biophys Res Commun 2010; 392: 234-239.
-
(2010)
Biochem Biophys Res Commun
, vol.392
, pp. 234-239
-
-
Charlton, H.K.1
Webster, J.2
Kruger, S.3
-
40
-
-
62749096761
-
Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling
-
Heiker JT, Wottawah CM, Juhl C, et al. Protein kinase CK2 interacts with adiponectin receptor 1 and participates in adiponectin signaling. Cell Signal 2009; 21: 936-942.
-
(2009)
Cell Signal
, vol.21
, pp. 936-942
-
-
Heiker, J.T.1
Wottawah, C.M.2
Juhl, C.3
-
41
-
-
84855229280
-
Adiponectin receptor 1 interacts with both subunits of protein kinase CK2
-
Juhl C, Morl K, Beck-Sickinger AG,. Adiponectin receptor 1 interacts with both subunits of protein kinase CK2. Mol Cell Biochem 2011; 356: 185-189.
-
(2011)
Mol Cell Biochem
, vol.356
, pp. 185-189
-
-
Juhl, C.1
Morl, K.2
Beck-Sickinger, A.G.3
-
42
-
-
80054035544
-
Diabetes impairs hematopoietic stem cell mobilization by altering niche function
-
Ferraro F, Lymperi S, Mendez-Ferrer S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 2011; 3: 104ra101.
-
(2011)
Sci Transl Med
, vol.3
, pp. 104ra101
-
-
Ferraro, F.1
Lymperi, S.2
Mendez-Ferrer, S.3
-
43
-
-
84855412101
-
Diabetic stem-cell "mobilopathy"
-
DiPersio JF,. Diabetic stem-cell "mobilopathy". N Engl J Med 2011; 365: 2536-2538.
-
(2011)
N Engl J Med
, vol.365
, pp. 2536-2538
-
-
Dipersio, J.F.1
-
44
-
-
84875425226
-
Diabetes impairs stem cell and proangiogenic cell mobilization in humans
-
Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 2013; 36: 943-949.
-
(2013)
Diabetes Care
, vol.36
, pp. 943-949
-
-
Fadini, G.P.1
Albiero, M.2
Vigili De Kreutzenberg, S.3
-
45
-
-
77955389023
-
Decreased circulating progenitor cell number and failed mechanisms of stromal cell-derived factor-1 mediated bone marrow mobilization impair diabetic tissue repair
-
Tepper OM, Carr J, Allen RJ, et al. Decreased circulating progenitor cell number and failed mechanisms of stromal cell-derived factor-1 mediated bone marrow mobilization impair diabetic tissue repair. Diabetes 2010; 59: 1974-1983.
-
(2010)
Diabetes
, vol.59
, pp. 1974-1983
-
-
Tepper, O.M.1
Carr, J.2
Allen, R.J.3
-
46
-
-
84897895811
-
Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1
-
Albiero M, Poncina N, Tjwa M, et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 2014; 63: 1353-1365.
-
(2014)
Diabetes
, vol.63
, pp. 1353-1365
-
-
Albiero, M.1
Poncina, N.2
Tjwa, M.3
-
47
-
-
84897904635
-
In vivo assessment of bone quality in postmenopausal women with type 2 diabetes
-
Farr JN, Drake MT, Amin S, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 2014; 29: 787-795.
-
(2014)
J Bone Miner Res
, vol.29
, pp. 787-795
-
-
Farr, J.N.1
Drake, M.T.2
Amin, S.3
-
48
-
-
84866162213
-
Circulating osteogenic precursor cells in type 2 diabetes mellitus
-
Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97: 3240-3250.
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. 3240-3250
-
-
Manavalan, J.S.1
Cremers, S.2
Dempster, D.W.3
-
49
-
-
0034999667
-
Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
-
Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930-1935.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, pp. 1930-1935
-
-
Weyer, C.1
Funahashi, T.2
Tanaka, S.3
-
50
-
-
0034096988
-
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients
-
Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595-1599.
-
(2000)
Arterioscler Thromb Vasc Biol
, vol.20
, pp. 1595-1599
-
-
Hotta, K.1
Funahashi, T.2
Arita, Y.3
-
51
-
-
79953310334
-
Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1
-
Tu Q, Zhang J, Dong LQ, et al. Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J Biol Chem 2011; 286: 12542-12553.
-
(2011)
J Biol Chem
, vol.286
, pp. 12542-12553
-
-
Tu, Q.1
Zhang, J.2
Dong, L.Q.3
-
52
-
-
79956140280
-
Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs
-
Ye JH, Xu YJ, Gao J, et al. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32: 5065-5076.
-
(2011)
Biomaterials
, vol.32
, pp. 5065-5076
-
-
Ye, J.H.1
Xu, Y.J.2
Gao, J.3
-
53
-
-
35348852485
-
Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone
-
Tu Q, Valverde P, Li S, et al. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 2007; 13: 2431-2440.
-
(2007)
Tissue Eng
, vol.13
, pp. 2431-2440
-
-
Tu, Q.1
Valverde, P.2
Li, S.3
-
54
-
-
84868251879
-
NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts
-
Wang B, Yang Y, Liu L, et al. NHERF1 regulation of PTH-dependent bimodal Pi transport in osteoblasts. Bone 2013; 52: 268-277.
-
(2013)
Bone
, vol.52
, pp. 268-277
-
-
Wang, B.1
Yang, Y.2
Liu, L.3
-
55
-
-
84555195940
-
Osteoblast isolation from murine calvaria and long bones
-
Bakker AD, Klein-Nulend J,. Osteoblast isolation from murine calvaria and long bones. Methods Mol Biol 2012; 816: 19-29.
-
(2012)
Methods Mol Biol
, vol.816
, pp. 19-29
-
-
Bakker, A.D.1
Klein-Nulend, J.2
-
56
-
-
79960633240
-
Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1
-
Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Mine Res 2011; 26: 1953-1963.
-
(2011)
J Bone Mine Res
, vol.26
, pp. 1953-1963
-
-
Zhang, J.1
Tu, Q.2
Bonewald, L.F.3
-
57
-
-
79960663308
-
Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development
-
Zhu W, Liang G, Huang Z, et al. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 2011; 286: 26794-26805.
-
(2011)
J Biol Chem
, vol.286
, pp. 26794-26805
-
-
Zhu, W.1
Liang, G.2
Huang, Z.3
-
58
-
-
77955696940
-
Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling
-
Bragdon B, Thinakaran S, Moseychuk O, et al. Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling. Biophys J 2010; 99: 897-904.
-
(2010)
Biophys J
, vol.99
, pp. 897-904
-
-
Bragdon, B.1
Thinakaran, S.2
Moseychuk, O.3
-
59
-
-
84891371227
-
Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes
-
Moseychuk O, Akkiraju H, Dutta J, et al. Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes. J Cell Commun Signal 2013; 7: 265-278.
-
(2013)
J Cell Commun Signal
, vol.7
, pp. 265-278
-
-
Moseychuk, O.1
Akkiraju, H.2
Dutta, J.3
|