-
2
-
-
0141740674
-
-
M. Tanaka M. Imai Y. Yamamoto K. Tanaka M. Shimowatari S. Nagumo N. Kawahara H. Suemune Org. Lett. 2003 5 1365
-
(2003)
Org. Lett.
, vol.5
, pp. 1365
-
-
Tanaka, M.1
Imai, M.2
Yamamoto, Y.3
Tanaka, K.4
Shimowatari, M.5
Nagumo, S.6
Kawahara, N.7
Suemune, H.8
-
3
-
-
1242307368
-
-
M. Imai M. Tanaka K. Tanaka Y. Yamamoto N. Imai-Ogata M. Shimowatari S. Nagumo N. Kawahara H. Suemune J. Org. Chem. 2004 69 1144
-
(2004)
J. Org. Chem.
, vol.69
, pp. 1144
-
-
Imai, M.1
Tanaka, M.2
Tanaka, K.3
Yamamoto, Y.4
Imai-Ogata, N.5
Shimowatari, M.6
Nagumo, S.7
Kawahara, N.8
Suemune, H.9
-
13
-
-
84889678755
-
-
For hydroacylation with β-sulfur substituted aldehydes, see
-
M. Castaing S. L. Wason B. Estepa J. F. Hooper M. C. Willis Angew. Chem., Int. Ed. 2013 52 13280
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 13280
-
-
Castaing, M.1
Wason, S.L.2
Estepa, B.3
Hooper, J.F.4
Willis, M.C.5
-
15
-
-
33845204295
-
-
G. L. Moxham H. E. Randell-Sly S. K. Brayshaw R. L. Woodward A. S. Weller M. C. Willis Angew. Chem., Int. Ed. 2006 45 7618
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 7618
-
-
Moxham, G.L.1
Randell-Sly, H.E.2
Brayshaw, S.K.3
Woodward, R.L.4
Weller, A.S.5
Willis, M.C.6
-
34
-
-
54849406161
-
-
For a review of hydroacylation methods that proceed by a mechanism other than aldehyde C-H bond activation, see
-
F. Shibahara J. F. Bower M. J. Krische J. Am. Chem. Soc. 2008 130 14120
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14120
-
-
Shibahara, F.1
Bower, J.F.2
Krische, M.J.3
-
37
-
-
79957750879
-
-
For selected examples of the intermolecular Stetter reaction with α,β-unsaturated carbonyl compounds, see
-
X. Bugaut F. Liu F. Glorius J. Am. Chem. Soc. 2011 133 8130
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8130
-
-
Bugaut, X.1
Liu, F.2
Glorius, F.3
-
46
-
-
0001086126
-
-
We expected catalyst 11 to exhibit a faster rate than the optimized reaction because none of the Rh would be sequestered as the double salt of 4 and 9. The fact that 11 provides only a slightly higher initial TOF than the optimized reaction is likely a result of the low solubility of the t-BuOK-vinylphenol mixture and the lack of stirring during NMR analysis
-
B. R. James C. G. Young J. Organomet. Chem. 1985 285 321
-
(1985)
J. Organomet. Chem.
, vol.285
, pp. 321
-
-
James, B.R.1
Young, C.G.2
-
48
-
-
37049091603
-
-
For examples of hydroacylation where deuterium scrambling is observed as a result of rate-limiting reductive elimination, see
-
D. Milstein J. Chem. Soc., Chem. Commun. 1982 1357
-
(1982)
J. Chem. Soc., Chem. Commun.
, pp. 1357
-
-
Milstein, D.1
-
52
-
-
38749095866
-
-
Ref. 6d Ref. 2d Ref. 2b To our knowledge, there are only two examples of olefin hydroacylation where reductive elimination has been ruled out as the rate-limiting step, see
-
I. F. D. Hyatt H. K. Anderson A. T. Morehead Jr A. L. Sargent Organometallics 2008 27 135
-
(2008)
Organometallics
, vol.27
, pp. 135
-
-
Hyatt, I.F.D.1
Anderson, H.K.2
Morehead, A.T.3
Sargent, A.L.4
-
53
-
-
70149090116
-
-
Ref. 2k An intermolecular KIE experiment is appropriate for this system given that C-H bond cleavage is the first step in the catalytic cycle and our observed catalyst resting states ([Rh(dcpm)(vinylphenolate)]) and [Rh(dcpm)(vinylphenolate)(aldehyde)] directly precede aldehyde activation. For a discussion on KIEs in metal catalysis, see
-
M. C. Coulter P. K. Dornan V. M. Dong J. Am. Chem. Soc. 2009 131 6932
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6932
-
-
Coulter, M.C.1
Dornan, P.K.2
Dong, V.M.3
-
58
-
-
67749119978
-
-
+ catalysed aldehyde decarbonylation, see ref. 18 In line with our observation of saturation kinetics with respect to the 2-vinylphenol, modifying the 2-vinylphenols at the 3 or 4 position also changes the reaction rate even though the substrate does not appear in the rate equation. More electron rich 2-vinylphenols appear to react slower than electron deficient substrates, but electron rich substrates also lead to unidentified side-products For the effect of electronics on oxidative addition, see
-
Z. Shen P. K. Dornan H. A. Khan T. K. Woo V. M. Dong J. Am. Chem. Soc. 2009 131 1077
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 1077
-
-
Shen, Z.1
Dornan, P.K.2
Khan, H.A.3
Woo, T.K.4
Dong, V.M.5
-
64
-
-
33748550288
-
-
Branched-selective migratory insertion is generally fast and reversible for olefin hydroacylation, whereas linear-selective insertion has a higher barrier, see: Ref. 16b Ref. 2d Ref. 15g for a related example of the hydroformylation reaction, see
-
D. L. DuBois D. M. Blake A. Miedaner C. J. Curtis M. R. DuBois J. A. Franz J. C. Linehan Organometallics 2006 25 4414
-
(2006)
Organometallics
, vol.25
, pp. 4414
-
-
Dubois, D.L.1
Blake, D.M.2
Miedaner, A.3
Curtis, C.J.4
Dubois, M.R.5
Franz, J.A.6
Linehan, J.C.7
|