메뉴 건너뛰기




Volumn 519, Issue PD, 2014, Pages 2822-2831

Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting

Author keywords

Indiana; Model averaging; Streamflow forecasting; Support vector regression; Wavelet analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISCRETE WAVELET TRANSFORMS; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEAN SQUARE ERROR; REGRESSION ANALYSIS; STREAM FLOW; WAVELET ANALYSIS;

EID: 84918773671     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.06.050     Document Type: Article
Times cited : (97)

References (66)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J.F. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353(3-4):247-266.
    • (2008) J. Hydrol. , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.F.1
  • 2
    • 85067750129 scopus 로고    scopus 로고
    • Using support vector regression to predict direct runoff, base flow and total flow in a mountaineous watershed with limited data
    • Adamowski J. Using support vector regression to predict direct runoff, base flow and total flow in a mountaineous watershed with limited data. Land Reclam. 2013, 45(1):71-83.
    • (2013) Land Reclam. , vol.45 , Issue.1 , pp. 71-83
    • Adamowski, J.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407:28-40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1-2):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 5
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami N.K., Duan Q., Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43:W01403. 10.1029/2005WR004745.
    • (2007) Water Resour. Res. , vol.43 , pp. W01403
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 6
    • 78751638074 scopus 로고    scopus 로고
    • Support vector machine approach to for longitudinal dispersion coefficients in streams
    • Azamathulla H.M., Wu F.C. Support vector machine approach to for longitudinal dispersion coefficients in streams. Appl. Soft Comput. 2011, 11:2902-2905.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2902-2905
    • Azamathulla, H.M.1    Wu, F.C.2
  • 7
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray M., Han D. Identification of support vector machines for runoff modeling. J. Hydroinform. 2004, 6(4):265-280.
    • (2004) J. Hydroinform. , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 8
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: an integral part of inference
    • Buckland S.T., Burnham K.P., Augustin N.H. Model selection: an integral part of inference. Biometrics 1997, 53:603-618.
    • (1997) Biometrics , vol.53 , pp. 603-618
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 10
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 11
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • Cao L.J., Tay F.E.H. Financial forecasting using support vector machines. Neural Comput. Appl. 2001, 10:184-192.
    • (2001) Neural Comput. Appl. , vol.10 , pp. 184-192
    • Cao, L.J.1    Tay, F.E.H.2
  • 12
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines.
    • Chang, C.C., Lin, C.J., 2001. LIBSVM: A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 13
    • 33845633383 scopus 로고    scopus 로고
    • Applying multi-resolution analysis to differential hydrological grey models with dual series
    • Chou C.M. Applying multi-resolution analysis to differential hydrological grey models with dual series. J. Hydrol. 2007, 332(1-2):174-186.
    • (2007) J. Hydrol. , vol.332 , Issue.1-2 , pp. 174-186
    • Chou, C.M.1
  • 14
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 1990, 36(5):6-7.
    • (1990) IEEE Trans. Inform. Theory , vol.36 , Issue.5 , pp. 6-7
    • Daubechies, I.1
  • 15
    • 33646407315 scopus 로고    scopus 로고
    • Discrete wavelet analysis to assess long-term trends in geomagnetic activity
    • de Artigas M.Z., Elias A.G., de Campra P.F. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Phys. Chem. Earth 2006, 31(1-3):77-80.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.1-3 , pp. 77-80
    • de Artigas, M.Z.1    Elias, A.G.2    de Campra, P.F.3
  • 16
    • 79956340139 scopus 로고    scopus 로고
    • Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach
    • Dhanya C.T., Nagesh Kumar D. Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour. Res. 2011, 47:W06507. 10.1029/2010WR010173.
    • (2011) Water Resour. Res. , vol.47 , pp. W06507
    • Dhanya, C.T.1    Nagesh Kumar, D.2
  • 17
    • 77954425477 scopus 로고    scopus 로고
    • Comparison of point forecast accuracy of model averaging methods in hydrologic applications
    • Diks C.G.H., Vrugt J.A. Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch. Environ. Res. Risk Assess. 2010, 24(6):809-820.
    • (2010) Stoch. Environ. Res. Risk Assess. , vol.24 , Issue.6 , pp. 809-820
    • Diks, C.G.H.1    Vrugt, J.A.2
  • 18
    • 84984442855 scopus 로고
    • Improved methods of combining forecast accuracy
    • Granger C.W.J., Ramanathan R. Improved methods of combining forecast accuracy. J. Forecast. 1984, 3:197-204.
    • (1984) J. Forecast. , vol.3 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 20
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74(12-13):2096-2107.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2096-2107
    • Hong, W.C.1
  • 21
    • 4944228528 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • Hsu, C.W., Chang, C.C., Lin, C.J., 2010. A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
    • (2010)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 22
    • 33847148421 scopus 로고    scopus 로고
    • Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique
    • Hua X., Ni Y., Ko J., Wong K. Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique. J. Comput. Civ. Eng. 2007, 21(2):122-135.
    • (2007) J. Comput. Civ. Eng. , vol.21 , Issue.2 , pp. 122-135
    • Hua, X.1    Ni, Y.2    Ko, J.3    Wong, K.4
  • 23
    • 84874509284 scopus 로고    scopus 로고
    • Monthly River flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
    • Kalteh A.M. Monthly River flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 2013, 54:1-8.
    • (2013) Comput. Geosci. , vol.54 , pp. 1-8
    • Kalteh, A.M.1
  • 24
    • 84867889577 scopus 로고    scopus 로고
    • Integration of nonlinear independent component analysis and support vector regression for stock price forecasting
    • Kao L.J., Chiu C.C., Lu C.J., Yang J.L. Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing 2013, 99:534-542.
    • (2013) Neurocomputing , vol.99 , pp. 534-542
    • Kao, L.J.1    Chiu, C.C.2    Lu, C.J.3    Yang, J.L.4
  • 25
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim G., Barros A.P. Quantitative flood forecasting using multisensor data and neural networks. J. Hydrol. 2001, 246:45-62.
    • (2001) J. Hydrol. , vol.246 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 26
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O. Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 2008, 22(20):4142-4152.
    • (2008) Hydrol. Process. , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 27
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent stream flow forecasting
    • Kisi O. Neural networks and wavelet conjunction model for intermittent stream flow forecasting. J. Hydrol. Eng. 2009, 14(8):773-782.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 28
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O., Cimen M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399:132-140.
    • (2011) J. Hydrol. , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 29
    • 84859425235 scopus 로고    scopus 로고
    • Precipitation forecasting by using wavelet-support vector machine conjunction model
    • Kisi O., Cimen M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng. Appl. Artif. Intell. 2012, 25:783-792.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 783-792
    • Kisi, O.1    Cimen, M.2
  • 30
    • 83255188967 scopus 로고    scopus 로고
    • Water resource requirement prediction based on the wavelet-bootstrap-Svm hybrid model
    • Li L. Water resource requirement prediction based on the wavelet-bootstrap-Svm hybrid model. J. Inf. Comput. Sci. 2011, 8(13):2563-2568.
    • (2011) J. Inf. Comput. Sci. , vol.8 , Issue.13 , pp. 2563-2568
    • Li, L.1
  • 31
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.Y., Cheng C.T., Chau K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51(4):599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 32
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong S., Sivapragasam C. Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 2002, 38(1):173-186.
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , Issue.1 , pp. 173-186
    • Liong, S.1    Sivapragasam, C.2
  • 33
    • 84885186759 scopus 로고    scopus 로고
    • Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China
    • Liu Z., Zhou P., Zhang F., Liu X., Chen G. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China. Agric. For. Meteorol. 2013, 182-183:101-108.
    • (2013) Agric. For. Meteorol. , pp. 101-108
    • Liu, Z.1    Zhou, P.2    Zhang, F.3    Liu, X.4    Chen, G.5
  • 35
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity R., Bhagwat P.P., Bhatnagar A. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol. Process. 2010, 24:917-923.
    • (2010) Hydrol. Process. , vol.24 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 36
    • 84880870950 scopus 로고    scopus 로고
    • Identification of hydrologic drought triggers from hydroclimatic predictor variables
    • Maity R., Ramadas M., Govindaraju R.S. Identification of hydrologic drought triggers from hydroclimatic predictor variables. Water Resour. Res. 2013, 49:4476-4492.
    • (2013) Water Resour. Res. , vol.49 , pp. 4476-4492
    • Maity, R.1    Ramadas, M.2    Govindaraju, R.S.3
  • 37
    • 40849130727 scopus 로고    scopus 로고
    • Short-term streamflow forecasting with global climate change implications-a comparative study between genetic programming and neural network models
    • Makkeasorn A., Chang N.B., Zhou X. Short-term streamflow forecasting with global climate change implications-a comparative study between genetic programming and neural network models. J. Hydrol. 2008, 352:336-354.
    • (2008) J. Hydrol. , vol.352 , pp. 336-354
    • Makkeasorn, A.1    Chang, N.B.2    Zhou, X.3
  • 38
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11(7):674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 39
    • 0016047730 scopus 로고
    • Application of seasonal parametric linear stochastic models to monthly flow data
    • McKerchar A.I., Delleur J.W. Application of seasonal parametric linear stochastic models to monthly flow data. Water Resour. Res. 1974, 10:246-255.
    • (1974) Water Resour. Res. , vol.10 , pp. 246-255
    • McKerchar, A.I.1    Delleur, J.W.2
  • 40
    • 84870234964 scopus 로고    scopus 로고
    • Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008)
    • Nalley D., Adamowski J., Khalil B. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008). J. Hydrol. 2012, 475:204-228.
    • (2012) J. Hydrol. , vol.475 , pp. 204-228
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3
  • 41
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 2009, 23(14):2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 42
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi O., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402(1-2):41-59.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 43
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)
    • Partal T., Küçük M. Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth 2006, 31(18):1189-1200.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1189-1200
    • Partal, T.1    Küçük, M.2
  • 45
    • 84885521312 scopus 로고    scopus 로고
    • The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia
    • Pokhrel P., Wang Q.J., Robertson D.E. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia. Water Resour. Res. 2013, 49:6671-6687. 10.1002/wrcr.20449.
    • (2013) Water Resour. Res. , vol.49 , pp. 6671-6687
    • Pokhrel, P.1    Wang, Q.J.2    Robertson, D.E.3
  • 47
    • 78651297519 scopus 로고    scopus 로고
    • Daily river flow forecasting using wavelet ANN hybrid models
    • Pramanik N., Panda R.K., Singh A. Daily river flow forecasting using wavelet ANN hybrid models. J. Hydroinform. 2010, 13(1):49-63.
    • (2010) J. Hydroinform. , vol.13 , Issue.1 , pp. 49-63
    • Pramanik, N.1    Panda, R.K.2    Singh, A.3
  • 48
    • 84855199264 scopus 로고    scopus 로고
    • Daily streamflow forecasting by machine learning methods with weather and climate inputs
    • Rasouli K., Hsieh W.W., Cannon A.J. Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 2012, 414-415:284-293.
    • (2012) J. Hydrol. , pp. 284-293
    • Rasouli, K.1    Hsieh, W.W.2    Cannon, A.J.3
  • 49
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an integrated hybrid modelling scheme
    • Remesan R., Shamim M.A., Han D., Mathew J. Runoff prediction using an integrated hybrid modelling scheme. J. Hydrol. 2009, 372:48-60.
    • (2009) J. Hydrol. , vol.372 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3    Mathew, J.4
  • 50
    • 84871115737 scopus 로고    scopus 로고
    • A review on the applications of wavelet transform in hydrology time series analysis
    • Sang Y.F. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122:8-15.
    • (2013) Atmos. Res. , vol.122 , pp. 8-15
    • Sang, Y.F.1
  • 51
    • 84879887179 scopus 로고    scopus 로고
    • Discrete wavelet-based trend identification in hydrologic time series
    • Sang Y.F., Wang Z., Liu C. Discrete wavelet-based trend identification in hydrologic time series. Hydrol. Process. 2013, 27:2021-2031.
    • (2013) Hydrol. Process. , vol.27 , pp. 2021-2031
    • Sang, Y.F.1    Wang, Z.2    Liu, C.3
  • 52
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term stream flow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri J., Kisi O. Short-term and long-term stream flow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 2010, 394(3-4):486-493.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 53
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C., Liong S.Y., Pasha M.F.K. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinform. 2001, 3(3):141-152.
    • (2001) J. Hydroinform. , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.Y.2    Pasha, M.F.K.3
  • 54
    • 78650731004 scopus 로고    scopus 로고
    • A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion
    • Symonds M.R.E., Moussalli A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav. Ecol. Sociobiol. 2011, 65:13-21.
    • (2011) Behav. Ecol. Sociobiol. , vol.65 , pp. 13-21
    • Symonds, M.R.E.1    Moussalli, A.2
  • 55
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 1(394):458-470.
    • (2010) J. Hydrol. , vol.1 , Issue.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 56
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily dischargeforecasting
    • Tiwari M.K., Chatterjee C. A new wavelet-bootstrap-ANN hybrid model for daily dischargeforecasting. J. Hydroinform. 2011, 13(3):500-519.
    • (2011) J. Hydroinform. , vol.13 , Issue.3 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 60
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • MIT Press, Cambridge, Massachusetts, USA, M. Mozer, M. Jordan, T. Petsche (Eds.)
    • Vapnik V., Golwich S., Smola A.J. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9 1997, 281-287. MIT Press, Cambridge, Massachusetts, USA. M. Mozer, M. Jordan, T. Petsche (Eds.).
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golwich, S.2    Smola, A.J.3
  • 61
  • 62
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of the hydrology
    • Wang W., Ding J. Wavelet network model and its application to the prediction of the hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 63
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.C., Chau K.W., Cheng C.T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374(3-4):294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 64
    • 84891559585 scopus 로고    scopus 로고
    • Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map
    • Wu M.C., Lin G.F., Lin H.Y. Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map. Hydrol. Process. 2012, 10.1002/hyp.9584.
    • (2012) Hydrol. Process.
    • Wu, M.C.1    Lin, G.F.2    Lin, H.Y.3
  • 65
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328(3-4):704-716.
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 66
    • 33845992581 scopus 로고    scopus 로고
    • Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China
    • Zhang Q., Xu C.Y., Jiang T., Wu Y.J. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. J. Hydrol. 2007, 333:265-274.
    • (2007) J. Hydrol. , vol.333 , pp. 265-274
    • Zhang, Q.1    Xu, C.Y.2    Jiang, T.3    Wu, Y.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.