메뉴 건너뛰기




Volumn 28, Issue 2, 2014, Pages 386-397

Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map

Author keywords

Extreme events; Flood warning system; Self organizing map; Streamflow forecasting; Support vector machine

Indexed keywords

COMPLEX PHYSICAL PROCESS; COMPUTATIONAL KERNELS; EXTREME EVENTS; FLOOD WARNING SYSTEM; FORECASTING PERFORMANCE; SPECIFIC PROPERTIES; STREAMFLOW FORECASTING; SUPPORT VECTOR REGRESSION (SVR);

EID: 84891559585     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.9584     Document Type: Article
Times cited : (51)

References (44)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology, part I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5(2): 115-123.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, part II: hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology, part II: hydrologic applications. Journal of Hydrologic Engineering, ASCE 5(2): 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 84863863577 scopus 로고    scopus 로고
    • Data mining in hydrology - invited commentary
    • Babovic V. 2005. Data mining in hydrology - invited commentary. Hydrological Processes 19(7): 1511-1515.
    • (2005) Hydrological Processes , vol.19 , Issue.7 , pp. 1511-1515
    • Babovic, V.1
  • 4
    • 0005598149 scopus 로고    scopus 로고
    • Forecasting of river discharges in the presence of chaos and noise
    • In Kluwer Academic Publishers: Dordrecht, The Netherlands;
    • Babovic V, Keijzer M. 2000. Forecasting of river discharges in the presence of chaos and noise. In Flood Issues in Contemporary Water Management. Kluwer Academic Publishers: Dordrecht, The Netherlands; 405-419.
    • (2000) Flood Issues in Contemporary Water Management , pp. 405-419
    • Babovic, V.1    Keijzer, M.2
  • 5
    • 27644570438 scopus 로고    scopus 로고
    • Rainfall-runoff modeling based on genetic programming
    • DOI: 10.1002/0470848944.hsa017.
    • Babovic V, Keijzer M. 2006. Rainfall-runoff modeling based on genetic programming. Encyclopedia of Hydrological Sciences. DOI: 10.1002/0470848944.hsa017.
    • (2006) Encyclopedia of Hydrological Sciences
    • Babovic, V.1    Keijzer, M.2
  • 6
    • 33746331373 scopus 로고    scopus 로고
    • Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications
    • Baumes LA, Serra JM, Serna P, Corma A. 2006. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. Journal of Combinatorial Chemistry 8(4): 583-596.
    • (2006) Journal of Combinatorial Chemistry , vol.8 , Issue.4 , pp. 583-596
    • Baumes, L.A.1    Serra, J.M.2    Serna, P.3    Corma, A.4
  • 7
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray M, Han D. 2004. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics 6(4): 265-280.
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 8
    • 33744824379 scopus 로고    scopus 로고
    • A hybrid linear-neural model for river flow forecasting
    • DOI: 10.1029/2005WR004072.
    • Chetan M, Sudheer KP. 2006. A hybrid linear-neural model for river flow forecasting. Water Resources Research 42(4): W04402. DOI: 10.1029/2005WR004072.
    • (2006) Water Resources Research , vol.42 , Issue.4
    • Chetan, M.1    Sudheer, K.P.2
  • 11
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • Han D, Chan L, Zhu N. 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics 9(4): 267-276.
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.4 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 12
    • 17844365878 scopus 로고    scopus 로고
    • Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales
    • DOI: 10.1029/2004WR003142.
    • Hong Y, Hsu K, Sorooshian S, Gao X. 2005. Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales. Water Resources Research 41(3): W03008. DOI: 10.1029/2004WR003142.
    • (2005) Water Resources Research , vol.41 , Issue.3
    • Hong, Y.1    Hsu, K.2    Sorooshian, S.3    Gao, X.4
  • 13
    • 78149450797 scopus 로고    scopus 로고
    • Improving flood forecasting in Bangladesh using an artificial neural network
    • DOI: 10.2166/hydro.2009.085.
    • Islam AS. 2010. Improving flood forecasting in Bangladesh using an artificial neural network. Journal of Hydroinformatics 12(3): 351-364. DOI: 10.2166/hydro.2009.085.
    • (2010) Journal of Hydroinformatics , vol.12 , Issue.3 , pp. 351-364
    • Islam, A.S.1
  • 14
    • 65349101737 scopus 로고    scopus 로고
    • Using oceanic-atmospheric oscillations for long lead time forecasting
    • DOI: 10.1029/2008WR006855.
    • Kalra A, Ahmad S. 2009. Using oceanic-atmospheric oscillations for long lead time forecasting. Water Resources Research 45(3): W03413. DOI: 10.1029/2008WR006855.
    • (2009) Water Resources Research , vol.45 , Issue.3
    • Kalra, A.1    Ahmad, S.2
  • 16
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • DOI: 10.1016/j.jhydrol.2003.10.015.
    • Lin GF, Chen LH. 2004. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289(1-4): 1-8. DOI: 10.1016/j.jhydrol.2003.10.015.
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 17
    • 48649086325 scopus 로고    scopus 로고
    • A systematic approach to the input determination for neural network rainfall-runoff models
    • DOI: 10.1002/hyp.6849.
    • Lin GF, Chen GR. 2008. A systematic approach to the input determination for neural network rainfall-runoff models. Hydrological Processes 22(14): 2524-2530. DOI: 10.1002/hyp.6849.
    • (2008) Hydrological Processes , vol.22 , Issue.14 , pp. 2524-2530
    • Lin, G.F.1    Chen, G.R.2
  • 18
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • DOI: 10.1016/j.jhydrol.2009.06.047.
    • Lin GF, Wu MC. 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 375(3-4): 450-458. DOI: 10.1016/j.jhydrol.2009.06.047.
    • (2009) Journal of Hydrology , vol.375 , Issue.3-4 , pp. 450-458
    • Lin, G.F.1    Wu, M.C.2
  • 19
    • 79960426659 scopus 로고    scopus 로고
    • An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model
    • DOI: 10.1016/j.jhydrol.2011.05.042.
    • Lin GF, Wu MC. 2011. An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. Journal of Hydrology 405(3-4): 439-450. DOI: 10.1016/j.jhydrol.2011.05.042.
    • (2011) Journal of Hydrology , vol.405 , Issue.3-4 , pp. 439-450
    • Lin, G.F.1    Wu, M.C.2
  • 20
    • 65649123113 scopus 로고    scopus 로고
    • Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
    • DOI: 10.1016/j.jhydrol.2009.03.032.
    • Lin GF, Chen GR, Huang PY, Chou YC. 2009a. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372(1-4): 17-29. DOI: 10.1016/j.jhydrol.2009.03.032.
    • (2009) Journal of Hydrology , vol.372 , Issue.1-4 , pp. 17-29
    • Lin, G.F.1    Chen, G.R.2    Huang, P.Y.3    Chou, Y.C.4
  • 21
    • 70349774410 scopus 로고    scopus 로고
    • Effective forecasting of hourly typhoon rainfall using support vector machines
    • DOI: 10.1029/2009WR007911.
    • Lin GF, Chen GR, Wu MC, Chou YC. 2009b. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research 45(8): W08440. DOI: 10.1029/2009WR007911.
    • (2009) Water Resources Research , vol.45 , Issue.8
    • Lin, G.F.1    Chen, G.R.2    Wu, M.C.3    Chou, Y.C.4
  • 22
    • 77954958168 scopus 로고    scopus 로고
    • Effective typhoon characteristics and their effects on SVM-based hourly reservoir inflow forecasting models
    • DOI: 10.1016/j.advwatres.2010.04.016.
    • Lin GF, Chen GR, Huang PY. 2010a. Effective typhoon characteristics and their effects on SVM-based hourly reservoir inflow forecasting models. Advances in Water Resources 33(8): 887-898. DOI: 10.1016/j.advwatres.2010.04.016.
    • (2010) Advances in Water Resources , vol.33 , Issue.8 , pp. 887-898
    • Lin, G.F.1    Chen, G.R.2    Huang, P.Y.3
  • 23
    • 72249115098 scopus 로고    scopus 로고
    • Using typhoon characteristics to improve the long lead-time flood forecasting of a small watershed
    • DOI: 10.1016/j.jhydrol.2009.11.019.
    • Lin GF, Huang PY, Chen GR. 2010b. Using typhoon characteristics to improve the long lead-time flood forecasting of a small watershed. Journal of Hydrology 380(3-4): 450-459. DOI: 10.1016/j.jhydrol.2009.11.019.
    • (2010) Journal of Hydrology , vol.380 , Issue.3-4 , pp. 450-459
    • Lin, G.F.1    Huang, P.Y.2    Chen, G.R.3
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15(1): 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier HR, Jain A, Dandy GC, Sudheer KP. 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software 25(8): 891-909.
    • (2010) Environmental Modelling and Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 27
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity R, Bhagwat PP, Bhatnagar A. 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes 24(7): 917-923.
    • (2010) Hydrological Processes , vol.24 , Issue.7 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 28
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H, Hsu KL, Gupta HV, Sorooshian S. 2004. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295(1-4): 246-262.
    • (2004) Journal of Hydrology , vol.295 , Issue.1-4 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.L.2    Gupta, H.V.3    Sorooshian, S.4
  • 31
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: a neural network modeling approach for hydrological processes
    • DOI: 10.1029/2005WR004317.
    • Parasuraman K, Elshorbagy A, Carey SK. 2006. Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resources Research 42(5): W05412. DOI: 10.1029/2005WR004317.
    • (2006) Water Resources Research , vol.42 , Issue.5
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 32
    • 78651297519 scopus 로고    scopus 로고
    • Daily river flow forecasting using wavelet ANN hybrid models
    • DOI: 10.2166/hydro.2010.040.
    • Pramanik N, Panda RK, Singh A. 2011. Daily river flow forecasting using wavelet ANN hybrid models. Journal of Hydroinformatics 13(1): 49-63. DOI: 10.2166/hydro.2010.040.
    • (2011) Journal of Hydroinformatics , vol.13 , Issue.1 , pp. 49-63
    • Pramanik, N.1    Panda, R.K.2    Singh, A.3
  • 33
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C, Liong SY. 2005. Flow categorization model for improving forecasting. Nordic Hydrology 36(1): 37-48.
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.Y.2
  • 34
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer KP, Nayak PC, Ramasastri KS. 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17(3): 677-686.
    • (2003) Hydrological Processes , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 35
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling
    • DOI: 10.1029/2006WR005383.
    • Toth E, Brath A. 2007. Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling. Water Resources Research 43(11): W11405. DOI: 10.1029/2006WR005383.
    • (2007) Water Resources Research , vol.43 , Issue.11
    • Toth, E.1    Brath, A.2
  • 38
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu CL, Chau KW, Li YS. 2008. River stage prediction based on a distributed support vector regression. Journal of Hydrology 358(1-2): 96-111.
    • (2008) Journal of Hydrology , vol.358 , Issue.1-2 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 39
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu CL, Chau KW, Li YS. 2009a. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology 372(1-4): 80-93.
    • (2009) Journal of Hydrology , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 40
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data preprocessing techniques
    • DOI: 10.1029/2007WR006737.
    • Wu CL, Chau KW, Li YS. 2009b. Predicting monthly streamflow using data-driven models coupled with data preprocessing techniques. Water Resources Research 45: W08432. DOI: 10.1029/2007WR006737.
    • (2009) Water Resources Research , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 41
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu ZX, Li JY. 2002. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 16(12): 2423-2439.
    • (2002) Hydrological Processes , vol.16 , Issue.12 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 42
    • 65449144705 scopus 로고    scopus 로고
    • Application of integrated back-propagation network and self-organizing map for flood forecasting
    • Yang CC, Chen CS. 2009. Application of integrated back-propagation network and self-organizing map for flood forecasting. Hydrological Processes 23(9): 1313-1323.
    • (2009) Hydrological Processes , vol.23 , Issue.9 , pp. 1313-1323
    • Yang, C.C.1    Chen, C.S.2
  • 43
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X, Liong SY, Babovic V. 2004. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6(3): 209-223.
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.Y.2    Babovic, V.3
  • 44
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu PS, Chen ST, Chang IF. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328(3-4): 704-716.
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.