-
1
-
-
0034174280
-
Artificial neural networks in hydrology, part I: preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology, part I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5(2): 115-123.
-
(2000)
Journal of Hydrologic Engineering, ASCE
, vol.5
, Issue.2
, pp. 115-123
-
-
-
2
-
-
0034174396
-
Artificial neural networks in hydrology, part II: hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology, part II: hydrologic applications. Journal of Hydrologic Engineering, ASCE 5(2): 124-137.
-
(2000)
Journal of Hydrologic Engineering, ASCE
, vol.5
, Issue.2
, pp. 124-137
-
-
-
3
-
-
84863863577
-
Data mining in hydrology - invited commentary
-
Babovic V. 2005. Data mining in hydrology - invited commentary. Hydrological Processes 19(7): 1511-1515.
-
(2005)
Hydrological Processes
, vol.19
, Issue.7
, pp. 1511-1515
-
-
Babovic, V.1
-
4
-
-
0005598149
-
Forecasting of river discharges in the presence of chaos and noise
-
In Kluwer Academic Publishers: Dordrecht, The Netherlands;
-
Babovic V, Keijzer M. 2000. Forecasting of river discharges in the presence of chaos and noise. In Flood Issues in Contemporary Water Management. Kluwer Academic Publishers: Dordrecht, The Netherlands; 405-419.
-
(2000)
Flood Issues in Contemporary Water Management
, pp. 405-419
-
-
Babovic, V.1
Keijzer, M.2
-
5
-
-
27644570438
-
Rainfall-runoff modeling based on genetic programming
-
DOI: 10.1002/0470848944.hsa017.
-
Babovic V, Keijzer M. 2006. Rainfall-runoff modeling based on genetic programming. Encyclopedia of Hydrological Sciences. DOI: 10.1002/0470848944.hsa017.
-
(2006)
Encyclopedia of Hydrological Sciences
-
-
Babovic, V.1
Keijzer, M.2
-
6
-
-
33746331373
-
Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications
-
Baumes LA, Serra JM, Serna P, Corma A. 2006. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. Journal of Combinatorial Chemistry 8(4): 583-596.
-
(2006)
Journal of Combinatorial Chemistry
, vol.8
, Issue.4
, pp. 583-596
-
-
Baumes, L.A.1
Serra, J.M.2
Serna, P.3
Corma, A.4
-
7
-
-
33746834358
-
Identification of support vector machines for runoff modeling
-
Bray M, Han D. 2004. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics 6(4): 265-280.
-
(2004)
Journal of Hydroinformatics
, vol.6
, Issue.4
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
8
-
-
33744824379
-
A hybrid linear-neural model for river flow forecasting
-
DOI: 10.1029/2005WR004072.
-
Chetan M, Sudheer KP. 2006. A hybrid linear-neural model for river flow forecasting. Water Resources Research 42(4): W04402. DOI: 10.1029/2005WR004072.
-
(2006)
Water Resources Research
, vol.42
, Issue.4
-
-
Chetan, M.1
Sudheer, K.P.2
-
11
-
-
35348956876
-
Flood forecasting using support vector machines
-
Han D, Chan L, Zhu N. 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics 9(4): 267-276.
-
(2007)
Journal of Hydroinformatics
, vol.9
, Issue.4
, pp. 267-276
-
-
Han, D.1
Chan, L.2
Zhu, N.3
-
12
-
-
17844365878
-
Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales
-
DOI: 10.1029/2004WR003142.
-
Hong Y, Hsu K, Sorooshian S, Gao X. 2005. Self-organizing nonlinear output (SONO): a neural network suitable for cloud patch-based rainfall estimation at small scales. Water Resources Research 41(3): W03008. DOI: 10.1029/2004WR003142.
-
(2005)
Water Resources Research
, vol.41
, Issue.3
-
-
Hong, Y.1
Hsu, K.2
Sorooshian, S.3
Gao, X.4
-
13
-
-
78149450797
-
Improving flood forecasting in Bangladesh using an artificial neural network
-
DOI: 10.2166/hydro.2009.085.
-
Islam AS. 2010. Improving flood forecasting in Bangladesh using an artificial neural network. Journal of Hydroinformatics 12(3): 351-364. DOI: 10.2166/hydro.2009.085.
-
(2010)
Journal of Hydroinformatics
, vol.12
, Issue.3
, pp. 351-364
-
-
Islam, A.S.1
-
14
-
-
65349101737
-
Using oceanic-atmospheric oscillations for long lead time forecasting
-
DOI: 10.1029/2008WR006855.
-
Kalra A, Ahmad S. 2009. Using oceanic-atmospheric oscillations for long lead time forecasting. Water Resources Research 45(3): W03413. DOI: 10.1029/2008WR006855.
-
(2009)
Water Resources Research
, vol.45
, Issue.3
-
-
Kalra, A.1
Ahmad, S.2
-
16
-
-
1642387025
-
A non-linear rainfall-runoff model using radial basis function network
-
DOI: 10.1016/j.jhydrol.2003.10.015.
-
Lin GF, Chen LH. 2004. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289(1-4): 1-8. DOI: 10.1016/j.jhydrol.2003.10.015.
-
(2004)
Journal of Hydrology
, vol.289
, Issue.1-4
, pp. 1-8
-
-
Lin, G.F.1
Chen, L.H.2
-
17
-
-
48649086325
-
A systematic approach to the input determination for neural network rainfall-runoff models
-
DOI: 10.1002/hyp.6849.
-
Lin GF, Chen GR. 2008. A systematic approach to the input determination for neural network rainfall-runoff models. Hydrological Processes 22(14): 2524-2530. DOI: 10.1002/hyp.6849.
-
(2008)
Hydrological Processes
, vol.22
, Issue.14
, pp. 2524-2530
-
-
Lin, G.F.1
Chen, G.R.2
-
18
-
-
69349084510
-
A hybrid neural network model for typhoon-rainfall forecasting
-
DOI: 10.1016/j.jhydrol.2009.06.047.
-
Lin GF, Wu MC. 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 375(3-4): 450-458. DOI: 10.1016/j.jhydrol.2009.06.047.
-
(2009)
Journal of Hydrology
, vol.375
, Issue.3-4
, pp. 450-458
-
-
Lin, G.F.1
Wu, M.C.2
-
19
-
-
79960426659
-
An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model
-
DOI: 10.1016/j.jhydrol.2011.05.042.
-
Lin GF, Wu MC. 2011. An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. Journal of Hydrology 405(3-4): 439-450. DOI: 10.1016/j.jhydrol.2011.05.042.
-
(2011)
Journal of Hydrology
, vol.405
, Issue.3-4
, pp. 439-450
-
-
Lin, G.F.1
Wu, M.C.2
-
20
-
-
65649123113
-
Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
-
DOI: 10.1016/j.jhydrol.2009.03.032.
-
Lin GF, Chen GR, Huang PY, Chou YC. 2009a. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372(1-4): 17-29. DOI: 10.1016/j.jhydrol.2009.03.032.
-
(2009)
Journal of Hydrology
, vol.372
, Issue.1-4
, pp. 17-29
-
-
Lin, G.F.1
Chen, G.R.2
Huang, P.Y.3
Chou, Y.C.4
-
21
-
-
70349774410
-
Effective forecasting of hourly typhoon rainfall using support vector machines
-
DOI: 10.1029/2009WR007911.
-
Lin GF, Chen GR, Wu MC, Chou YC. 2009b. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research 45(8): W08440. DOI: 10.1029/2009WR007911.
-
(2009)
Water Resources Research
, vol.45
, Issue.8
-
-
Lin, G.F.1
Chen, G.R.2
Wu, M.C.3
Chou, Y.C.4
-
22
-
-
77954958168
-
Effective typhoon characteristics and their effects on SVM-based hourly reservoir inflow forecasting models
-
DOI: 10.1016/j.advwatres.2010.04.016.
-
Lin GF, Chen GR, Huang PY. 2010a. Effective typhoon characteristics and their effects on SVM-based hourly reservoir inflow forecasting models. Advances in Water Resources 33(8): 887-898. DOI: 10.1016/j.advwatres.2010.04.016.
-
(2010)
Advances in Water Resources
, vol.33
, Issue.8
, pp. 887-898
-
-
Lin, G.F.1
Chen, G.R.2
Huang, P.Y.3
-
23
-
-
72249115098
-
Using typhoon characteristics to improve the long lead-time flood forecasting of a small watershed
-
DOI: 10.1016/j.jhydrol.2009.11.019.
-
Lin GF, Huang PY, Chen GR. 2010b. Using typhoon characteristics to improve the long lead-time flood forecasting of a small watershed. Journal of Hydrology 380(3-4): 450-459. DOI: 10.1016/j.jhydrol.2009.11.019.
-
(2010)
Journal of Hydrology
, vol.380
, Issue.3-4
, pp. 450-459
-
-
Lin, G.F.1
Huang, P.Y.2
Chen, G.R.3
-
25
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15(1): 101-124.
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
26
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier HR, Jain A, Dandy GC, Sudheer KP. 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software 25(8): 891-909.
-
(2010)
Environmental Modelling and Software
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
27
-
-
77951662436
-
Potential of support vector regression for prediction of monthly streamflow using endogenous property
-
Maity R, Bhagwat PP, Bhatnagar A. 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes 24(7): 917-923.
-
(2010)
Hydrological Processes
, vol.24
, Issue.7
, pp. 917-923
-
-
Maity, R.1
Bhagwat, P.P.2
Bhatnagar, A.3
-
28
-
-
3142538909
-
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
-
Moradkhani H, Hsu KL, Gupta HV, Sorooshian S. 2004. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295(1-4): 246-262.
-
(2004)
Journal of Hydrology
, vol.295
, Issue.1-4
, pp. 246-262
-
-
Moradkhani, H.1
Hsu, K.L.2
Gupta, H.V.3
Sorooshian, S.4
-
29
-
-
34447500396
-
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
-
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900.
-
(2007)
Transactions of the ASABE
, vol.50
, Issue.3
, pp. 885-900
-
-
Moriasi, D.N.1
Arnold, J.G.2
Van Liew, M.W.3
Bingner, R.L.4
Harmel, R.D.5
Veith, T.L.6
-
31
-
-
33745435792
-
Spiking modular neural networks: a neural network modeling approach for hydrological processes
-
DOI: 10.1029/2005WR004317.
-
Parasuraman K, Elshorbagy A, Carey SK. 2006. Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resources Research 42(5): W05412. DOI: 10.1029/2005WR004317.
-
(2006)
Water Resources Research
, vol.42
, Issue.5
-
-
Parasuraman, K.1
Elshorbagy, A.2
Carey, S.K.3
-
32
-
-
78651297519
-
Daily river flow forecasting using wavelet ANN hybrid models
-
DOI: 10.2166/hydro.2010.040.
-
Pramanik N, Panda RK, Singh A. 2011. Daily river flow forecasting using wavelet ANN hybrid models. Journal of Hydroinformatics 13(1): 49-63. DOI: 10.2166/hydro.2010.040.
-
(2011)
Journal of Hydroinformatics
, vol.13
, Issue.1
, pp. 49-63
-
-
Pramanik, N.1
Panda, R.K.2
Singh, A.3
-
33
-
-
18144390148
-
Flow categorization model for improving forecasting
-
Sivapragasam C, Liong SY. 2005. Flow categorization model for improving forecasting. Nordic Hydrology 36(1): 37-48.
-
(2005)
Nordic Hydrology
, vol.36
, Issue.1
, pp. 37-48
-
-
Sivapragasam, C.1
Liong, S.Y.2
-
34
-
-
0037470339
-
Improving peak flow estimates in artificial neural network river flow models
-
Sudheer KP, Nayak PC, Ramasastri KS. 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17(3): 677-686.
-
(2003)
Hydrological Processes
, vol.17
, Issue.3
, pp. 677-686
-
-
Sudheer, K.P.1
Nayak, P.C.2
Ramasastri, K.S.3
-
35
-
-
37549066943
-
Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling
-
DOI: 10.1029/2006WR005383.
-
Toth E, Brath A. 2007. Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling. Water Resources Research 43(11): W11405. DOI: 10.1029/2006WR005383.
-
(2007)
Water Resources Research
, vol.43
, Issue.11
-
-
Toth, E.1
Brath, A.2
-
38
-
-
47949121319
-
River stage prediction based on a distributed support vector regression
-
Wu CL, Chau KW, Li YS. 2008. River stage prediction based on a distributed support vector regression. Journal of Hydrology 358(1-2): 96-111.
-
(2008)
Journal of Hydrology
, vol.358
, Issue.1-2
, pp. 96-111
-
-
Wu, C.L.1
Chau, K.W.2
Li, Y.S.3
-
39
-
-
65749118118
-
Methods to improve neural network performance in daily flows prediction
-
Wu CL, Chau KW, Li YS. 2009a. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology 372(1-4): 80-93.
-
(2009)
Journal of Hydrology
, vol.372
, Issue.1-4
, pp. 80-93
-
-
Wu, C.L.1
Chau, K.W.2
Li, Y.S.3
-
40
-
-
70349777454
-
Predicting monthly streamflow using data-driven models coupled with data preprocessing techniques
-
DOI: 10.1029/2007WR006737.
-
Wu CL, Chau KW, Li YS. 2009b. Predicting monthly streamflow using data-driven models coupled with data preprocessing techniques. Water Resources Research 45: W08432. DOI: 10.1029/2007WR006737.
-
(2009)
Water Resources Research
, vol.45
-
-
Wu, C.L.1
Chau, K.W.2
Li, Y.S.3
-
41
-
-
0037200134
-
Short-term inflow forecasting using an artificial neural network model
-
Xu ZX, Li JY. 2002. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 16(12): 2423-2439.
-
(2002)
Hydrological Processes
, vol.16
, Issue.12
, pp. 2423-2439
-
-
Xu, Z.X.1
Li, J.Y.2
-
42
-
-
65449144705
-
Application of integrated back-propagation network and self-organizing map for flood forecasting
-
Yang CC, Chen CS. 2009. Application of integrated back-propagation network and self-organizing map for flood forecasting. Hydrological Processes 23(9): 1313-1323.
-
(2009)
Hydrological Processes
, vol.23
, Issue.9
, pp. 1313-1323
-
-
Yang, C.C.1
Chen, C.S.2
-
43
-
-
84919454581
-
EC-SVM approach for real-time hydrologic forecasting
-
Yu X, Liong SY, Babovic V. 2004. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6(3): 209-223.
-
(2004)
Journal of Hydroinformatics
, vol.6
, Issue.3
, pp. 209-223
-
-
Yu, X.1
Liong, S.Y.2
Babovic, V.3
-
44
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu PS, Chen ST, Chang IF. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328(3-4): 704-716.
-
(2006)
Journal of Hydrology
, vol.328
, Issue.3-4
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
|