메뉴 건너뛰기




Volumn 8, Issue 13, 2011, Pages 2563-2568

Water resource requirement prediction based on the wavelet-bootstrap-SVM hybrid model

Author keywords

Intelligent learning algorithm; Prediction algorithm; Water resource; WBSVM

Indexed keywords

HYBRID MODEL; INPUT NODE; INTELLIGENT LEARNING; MULTI-STEP PREDICTION; PREDICTION ALGORITHM; PREDICTION PERFORMANCE; RESOURCE REQUIREMENTS; SVM MODEL; TESTING RESULTS; WBSVM;

EID: 83255188967     PISSN: 15487741     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (12)
  • 1
    • 43649092022 scopus 로고    scopus 로고
    • Intelligent reservoir operation system based on evolving artificial neural networks
    • Paulo Chaves, Fi-John Chang. Intelligent reservoir operation system based on evolving artificial neural networks. Advances in Water Resources 31(2008) 926-936
    • (2008) Advances in Water Resources , vol.31 , pp. 926-936
    • Chaves, P.1    Chang, F.-J.2
  • 2
    • 54049114223 scopus 로고    scopus 로고
    • A study on the network traffic of Connexion by Boeing: Modeling with artificial neural networks
    • Douglas K. Swift, Cihan H. Dagli. A study on the network traffic of Connexion by Boeing: Modeling with artificial neural networks. Engineering Applications of Artificial Intelligence 21(2008) 1113-1129
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , pp. 1113-1129
    • Swift, D.K.1    Dagli, C.H.2
  • 3
    • 37549035867 scopus 로고    scopus 로고
    • A knowledge-based artificial neural network classifier for pulmonary embolism diagnosis
    • G. Serpen, D.K. Tekkedil, M. Orra. A knowledge-based artificial neural network classifier for pulmonary embolism diagnosis. Computers in Biology and Medicine 38(2008) 204-220
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 204-220
    • Serpen, G.1    Tekkedil, D.K.2    Orra, M.3
  • 4
    • 52049110988 scopus 로고    scopus 로고
    • Predicting sea-level variations at the Cocos (Keeling) placeIslands with artificial neural networks
    • Dina Makarynska, Oleg Makarynskyy. Predicting sea-level variations at the Cocos (Keeling) placeIslands with artificial neural networks. Computers & Geosciences 34(2008) 1910-1917
    • (2008) Computers & Geosciences , vol.34 , pp. 1910-1917
    • Makarynska, D.1    Makarynskyy, O.2
  • 5
    • 79957974955 scopus 로고    scopus 로고
    • Evaluation of effect of coal chemical properties on coal swelling index using artificial neural networks
    • S. Khoshjavan, B. Rezai, M. Heidary. Evaluation of effect of coal chemical properties on coal swelling index using artificial neural networks. Expert Systems with Applications 38(2011) 12906-12912
    • (2011) Expert Systems with Applications , vol.38 , pp. 12906-12912
    • Khoshjavan, S.1    Rezai, B.2    Heidary, M.3
  • 6
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamow prediction using artificial neural networks
    • Lance E. Besaw, Donna M. Rizzo, Paul R. Bierman, William R. Hackett. Advances in ungauged streamow prediction using artificial neural networks. Journal of Hydrology 386(2010) 27-37
    • (2010) Journal of Hydrology , vol.386 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 7
    • 59749085064 scopus 로고    scopus 로고
    • Ensembled support vector machines for human papillomavirus risk type prediction from protein secondary structures
    • Sun Kim, Jeongmi Kim, Byoung-Tak Zhang. Ensembled support vector machines for human papillomavirus risk type prediction from protein secondary structures. Computers in Biology and Medicine 39(2009) 187-193
    • (2009) Computers in Biology and Medicine , vol.39 , pp. 187-193
    • Kim, S.1    Kim, J.2    Zhang, B.-T.3
  • 8
    • 60949086321 scopus 로고    scopus 로고
    • Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines
    • N. Shojai Kaveh, F. Mohammadi, S.N. Ashrafizadeh. Prediction of cell voltage and current efficiency in a lab scale chlor-alkali membrane cell based on support vector machines. Chemical Engineering Journal 147(2009) 161-172
    • (2009) Chemical Engineering Journal , vol.147 , pp. 161-172
    • Kaveh, N.S.1    Mohammadi, F.2    Ashrafizadeh, S.N.3
  • 9
    • 71749091806 scopus 로고    scopus 로고
    • A hybrid approach of DEA, rough set and support vector machines for business failure prediction
    • Ching-Chiang Yeh, Der-Jang Chi, Ming-Fu Hsu. A hybrid approach of DEA, rough set and support vector machines for business failure prediction. Expert Systems with Applications 37(2010) 1535-1541
    • (2010) Expert Systems with Applications , vol.37 , pp. 1535-1541
    • Yeh, C.-C.1    Chi, D.-J.2    Hsu, M.-F.3
  • 10
    • 70449627002 scopus 로고    scopus 로고
    • Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity
    • Eslam Pourbasheer, Siavash Riahi, Mohammad Reza Ganjali, Parviz Norouzi. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European Journal of Medicinal Chemistry 44(2009) 5023-5028
    • (2009) European Journal of Medicinal Chemistry , vol.44 , pp. 5023-5028
    • Pourbasheer, E.1    Riahi, S.2    Ganjali, M.R.3    Norouzi, P.4
  • 11
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
    • P. Konar, P. Chattopadhyay. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing 11(2011) 4203-4211
    • (2011) Applied Soft Computing , vol.11 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 12
    • 77956614388 scopus 로고    scopus 로고
    • An expert system based on Generalized Discriminant Analysis and Wavelet Support Vector Machine for diagnosis of thyroid diseases
    • Esin Dogantekin, Akif Dogantekin, Derya Avci. An expert system based on Generalized Discriminant Analysis and Wavelet Support Vector Machine for diagnosis of thyroid diseases. Expert Systems with Applications 38(2011) 146-150
    • (2011) Expert Systems with Applications , vol.38 , pp. 146-150
    • Dogantekin, E.1    Dogantekin, A.2    Avci, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.