메뉴 건너뛰기




Volumn 24, Issue 6, 2010, Pages 809-820

Comparison of point forecast accuracy of model averaging methods in hydrologic applications

Author keywords

Bates Granger weights; Bayesian model averaging; Granger Ramanathan weights; Mallows model averaging; Streamflow forecasting; Tensiometric pressure head

Indexed keywords

AKAIKE'S INFORMATION CRITERIONS; AVERAGING METHOD; BAYESIAN MODEL AVERAGING; CONCEPTUAL MODEL; DENSITY FORECAST; ENVIRONMENTAL SYSTEMS; FORECAST ACCURACY; FORECAST ERRORS; HYDROLOGIC APPLICATIONS; HYDROLOGIC SYSTEMS; INFORMATION CRITERION; MODEL AVERAGING; MODEL OUTPUTS; MULTI-MODEL; PREDICTIVE DISTRIBUTIONS; PRESSURE HEADS; STATISTICAL LITERATURE; STREAMFLOW FORECASTING; VADOSE ZONE; WATER FLOWS;

EID: 77954425477     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-010-0378-z     Document Type: Article
Times cited : (143)

References (40)
  • 2
    • 77954425578 scopus 로고    scopus 로고
    • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, pp 443-476.
  • 3
    • 64149099829 scopus 로고    scopus 로고
    • Bayesian modeling averaging's problematic treatment of extreme weather and a paradigm shift that fixes it
    • Bishop CH, Shanley KT (2008) Bayesian modeling averaging's problematic treatment of extreme weather and a paradigm shift that fixes it. Mon Weather Rev 136: 4641-4652.
    • (2008) Monthly Weather Review , vol.136 , pp. 4641-4652
    • Bishop, C.H.1    Shanley, K.T.2
  • 4
    • 33847674721 scopus 로고
    • A hydrograph based model for estimating the water yield of ungauged catchments
    • Boughton WC (1993) A hydrograph based model for estimating the water yield of ungauged catchments. J Irrigat Drain Eng 116: 83-98.
    • (1993) Journal of Irrigation and Drainage Engineering , vol.116 , pp. 83-98
    • Boughton, W.C.1
  • 6
  • 7
    • 77954424156 scopus 로고    scopus 로고
    • Burnash RJ, Ferral RL, McQuir RA (1973) A generalized streamflow simulation system. Technical Report. Joint Federal-State River Forecast.
  • 11
    • 20444484849 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and CRPS estimation
    • Gneiting T, Raftery AE, Westveld AH, Goldman T (2005) Calibrated probabilistic forecasting using ensemble model output statistics and CRPS estimation. Mon Weather Rev 133: 1098-1118.
    • (2005) Monthly Weather Review , vol.133 , pp. 1098-1118
    • Gneiting, T.1    Raftery, A.E.2    Westveld, A.H.3    Goldman, T.4
  • 13
    • 34250303142 scopus 로고    scopus 로고
    • Least-squares model averaging
    • Hansen BE (2007) Least-squares model averaging. Econometrica 75: 1175-1189.
    • (2007) Econometrica , vol.75 , pp. 1175-1189
    • Hansen, B.E.1
  • 14
    • 53649099464 scopus 로고    scopus 로고
    • Least-squares forecast averaging
    • Hansen BE (2008) Least-squares forecast averaging. J Econom 146: 342-350.
    • (2008) Journal of Econometrics , vol.146 , pp. 342-350
    • Hansen, B.E.1
  • 17
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. J Hydrol 211: 69-85.
    • (1998) Journal of Hydrology , vol.211 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 18
    • 28244439991 scopus 로고    scopus 로고
    • Marshall L, Nott D, Sharma A (2005) Hydrological model selection: a bayesian alternative. Water Resour Res 41. doi: 10. 1029/2004WR003719.
  • 20
    • 0015573240 scopus 로고
    • Numerical simulation of the rainfall runoff processes on a daily basis
    • Nielsen SA, Hansen E (1973) Numerical simulation of the rainfall runoff processes on a daily basis. Nordic Hydrol 4: 171-190.
    • (1973) Nordic Hydrology , vol.4 , pp. 171-190
    • Nielsen, S.A.1    Hansen, E.2
  • 21
    • 33644526931 scopus 로고    scopus 로고
    • Oudin L, Perrin C, Mathevet T, Andréassian V, Michel C (2005) Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J Hydrol 320: 62-83. doi: 10. 1016/j. jhydrol. 2005. 07. 016.
  • 22
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279: 275-289.
    • (2003) Journal of Hydrology , vol.279 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 25
    • 59649124252 scopus 로고    scopus 로고
    • Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res 44: 1-16.
  • 27
    • 33847624077 scopus 로고    scopus 로고
    • Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43: 1-15.
  • 28
    • 0036998958 scopus 로고    scopus 로고
    • Vrugt JA, Bouten W, Gupta HV, Sorooshian S (2002) Toward improved identifiability of hydrologic model parameters: the information content of experimental data. Water Resour Res 38(12). doi: 10. 1029/2001WR001118.
  • 29
    • 14944365603 scopus 로고    scopus 로고
    • Vrugt JA, Diks CGH, Gupta HV, Bouten W, Verstraten JM (2005) Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation. Water Resour Res 41(1). doi: 10. 1029/2004WR003059.
  • 30
    • 33847633276 scopus 로고    scopus 로고
    • Vrugt JA, Clark MP, Diks CGH, Duan Q, Robinson BA (2006a) Multi-objective calibration of forecast ensembles using bayesian model averaging. Geophys Res Lett 33. doi: 10. 1029/2006GL027126.
  • 31
    • 33744917802 scopus 로고    scopus 로고
    • Vrugt JA, Gupta HV, Dekker SC, Sorooshian S, Wagener T, Bouten W (2006b) Application of stochastic parameter optimization to the Sacramento soil moisture accounting model. J Hydrol 325: 288-307. doi: 10. 1016/j. hydrol. 2005. 10. 041.
  • 32
    • 57049103413 scopus 로고    scopus 로고
    • Ensemble bayesian model averaging using Markov chain Monte Carlo sampling
    • Vrugt JA, Diks CGH, Clark MP (2008) Ensemble bayesian model averaging using Markov chain Monte Carlo sampling. Environ Fluid Dyn 8: 579-595.
    • (2008) Environmental Fluid Dynamics , vol.8 , pp. 579-595
    • Vrugt, J.A.1    Diks, C.G.H.2    Clark, M.P.3
  • 35
    • 77950520470 scopus 로고    scopus 로고
    • Wan ATK, Zhang X, Zou G (2010) Least squares model averaging by Mallows criterion. J Econom (forthcoming).
  • 36
    • 57049121988 scopus 로고    scopus 로고
    • Wöhling T, Vrugt JA (2008) Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models. Water Resour Res 44: 1-18.
  • 37
    • 40849094690 scopus 로고    scopus 로고
    • Comparison of three multiobjective algorithms for inverse modeling of vadose zone hydrolic properties
    • Wöhling T, Vrugt JA, Barkle GF (2008) Comparison of three multiobjective algorithms for inverse modeling of vadose zone hydrolic properties. Soil Sci Soc Am J 72: 305-319.
    • (2008) Soil Science Society of America Journal , vol.72 , pp. 305-319
    • Wöhling, T.1    Vrugt, J.A.2    Barkle, G.F.3
  • 38
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo P, Gupta HV, Sorooshian S (1996) Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J Hydrol 181: 23-48.
    • (1996) Journal of Hydrology , vol.181 , pp. 23-48
    • Yapo, P.1    Gupta, H.V.2    Sorooshian, S.3
  • 39
    • 2942700220 scopus 로고    scopus 로고
    • Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40. doi: 10. 1029/2003WR002557.
  • 40
    • 43249109413 scopus 로고    scopus 로고
    • Ye M, Meyer PD, Neuman SP (2008) On model selection criteria in multimodel analysis. Water Resour Res 44: 1-12.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.