-
1
-
-
79952538039
-
Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid
-
Abdel-Rahman M.A., et al. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid. Appl. Microbiol. Biotechnol. 2011, 89:1039-1049.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 1039-1049
-
-
Abdel-Rahman, M.A.1
-
2
-
-
33646490414
-
Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor
-
Wee Y.J., et al. Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. J. Ind. Microbiol. Biotechnol. 2006, 33:431-435.
-
(2006)
J. Ind. Microbiol. Biotechnol.
, vol.33
, pp. 431-435
-
-
Wee, Y.J.1
-
3
-
-
77953317627
-
D-(-)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24
-
Singhvi M., et al. D-(-)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 2010, 12:1106-1109.
-
(2010)
Green Chem.
, vol.12
, pp. 1106-1109
-
-
Singhvi, M.1
-
4
-
-
84875863741
-
-
Wiley, A. Rafael (Ed.)
-
Poly(lactic acid) Synthesis, Structures, Properties, Processing, and Applications 2010, Wiley. A. Rafael (Ed.).
-
(2010)
Poly(lactic acid) Synthesis, Structures, Properties, Processing, and Applications
-
-
-
5
-
-
80053459756
-
Biotechnological routes based on lactic acid production from biomass
-
Gao C., et al. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 2011, 29:930-939.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 930-939
-
-
Gao, C.1
-
6
-
-
84998881026
-
Draft genome sequence of a new homofermentative, lactic acid-producing Enterococcus faecalis isolate, CBRD01
-
Christopher L.P., et al. Draft genome sequence of a new homofermentative, lactic acid-producing Enterococcus faecalis isolate, CBRD01. Genome Announc. 2014, 2:e00147-e214.
-
(2014)
Genome Announc.
, vol.2
, pp. e00147-e214
-
-
Christopher, L.P.1
-
7
-
-
77955226866
-
An overview of the recent developments in polylactide (PLA) research
-
Madhavan Nampoothiri K., et al. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101:8493-8501.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 8493-8501
-
-
Madhavan Nampoothiri, K.1
-
8
-
-
84923310679
-
Production of lactic acid using a new homofermentative Enterococcus faecalis isolate
-
Published online June 3, 2014
-
Subramanian M.R., et al. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb. Biotechnol. 2014, Published online June 3, 2014. 10.1111/1751-7915.12133.
-
(2014)
Microb. Biotechnol.
-
-
Subramanian, M.R.1
-
9
-
-
0036643903
-
Properties of lactic acid based polymers and their correlation with composition
-
Södergård A., Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27:1123-1163.
-
(2002)
Prog. Polym. Sci.
, vol.27
, pp. 1123-1163
-
-
Södergård, A.1
Stolt, M.2
-
10
-
-
0032194734
-
A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies
-
Amass W., et al. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47:89-144.
-
(1998)
Polym. Int.
, vol.47
, pp. 89-144
-
-
Amass, W.1
-
11
-
-
84875244489
-
Lactic acid properties, applications and production: A review
-
Martinez F.A.C., et al. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30:70-83.
-
(2013)
Trends Food Sci. Technol.
, vol.30
, pp. 70-83
-
-
Martinez, F.A.C.1
-
12
-
-
79955978048
-
Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol
-
Ramírez-López C.A., et al. Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol. J. Chem. Technol. Biotechnol. 2011, 86:867-874.
-
(2011)
J. Chem. Technol. Biotechnol.
, vol.86
, pp. 867-874
-
-
Ramírez-López, C.A.1
-
13
-
-
84911407097
-
The current status and future expectations in industrial production of lactic acid by lactic acid bacteria
-
InTech, M. Kongo (Ed.)
-
Taskila S., Ojamo H. The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes 2013, 615-632. InTech. M. Kongo (Ed.).
-
(2013)
Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes
, pp. 615-632
-
-
Taskila, S.1
Ojamo, H.2
-
14
-
-
82955162743
-
Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
-
Abdel-Rahman M.A., et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2010, 156:286-301.
-
(2010)
J. Biotechnol.
, vol.156
, pp. 286-301
-
-
Abdel-Rahman, M.A.1
-
15
-
-
77954254857
-
Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol
-
Mazumdar S., et al. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 2010, 76:4327-4336.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 4327-4336
-
-
Mazumdar, S.1
-
16
-
-
84872767064
-
Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli
-
Mazumdar S., et al. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb. Cell Fact. 2013, 12:1-11.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 1-11
-
-
Mazumdar, S.1
-
17
-
-
84890844710
-
Efficient bioconversion of crude glycerol from biodiesel to optically pure D-lactate by metabolically engineered Escherichia coli
-
Chen X., et al. Efficient bioconversion of crude glycerol from biodiesel to optically pure D-lactate by metabolically engineered Escherichia coli. Green Chem. 2014, 16:342-350.
-
(2014)
Green Chem.
, vol.16
, pp. 342-350
-
-
Chen, X.1
-
18
-
-
84884374539
-
Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients
-
Wang Y., et al. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients. Bioresour. Technol. 2013, 148:394-400.
-
(2013)
Bioresour. Technol.
, vol.148
, pp. 394-400
-
-
Wang, Y.1
-
19
-
-
0033823567
-
Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid
-
Kyla-Nikkila K., et al. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl. Environ. Microbiol. 2000, 66:3835-3841.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 3835-3841
-
-
Kyla-Nikkila, K.1
-
20
-
-
80051546043
-
D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum
-
Jia X., et al. D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2011, 27:2117-2124.
-
(2011)
World J. Microbiol. Biotechnol.
, vol.27
, pp. 2117-2124
-
-
Jia, X.1
-
21
-
-
33745630935
-
Lactic acid: recent advances in products, processes and technologies - a review
-
Datta R., Henry M. Lactic acid: recent advances in products, processes and technologies - a review. J. Chem. Technol. Biotechnol. 2006, 81:1119-1129.
-
(2006)
J. Chem. Technol. Biotechnol.
, vol.81
, pp. 1119-1129
-
-
Datta, R.1
Henry, M.2
-
22
-
-
77957731883
-
Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent
-
Qin J., et al. Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour. Technol. 2010, 101:7570-7576.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 7570-7576
-
-
Qin, J.1
-
23
-
-
0035989644
-
Genome shuffling of Lactobacillus for improved acid tolerance
-
Patnaik R., et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 2002, 20:707-712.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 707-712
-
-
Patnaik, R.1
-
24
-
-
77951768065
-
Strain improvement of Lactobacillus lactis for D-lactic acid production
-
Joshi D.S., et al. Strain improvement of Lactobacillus lactis for D-lactic acid production. Biotechnol. Lett. 2010, 32:517-520.
-
(2010)
Biotechnol. Lett.
, vol.32
, pp. 517-520
-
-
Joshi, D.S.1
-
25
-
-
79960083590
-
Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance
-
Carvalho A.L., et al. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl. Environ. Microbiol. 2011, 77:4189-4199.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 4189-4199
-
-
Carvalho, A.L.1
-
26
-
-
84859488379
-
Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524
-
Trip H., et al. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524. J. Biol. Chem. 2012, 287:11195-11204.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 11195-11204
-
-
Trip, H.1
-
27
-
-
84878004318
-
Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases
-
Ilmen M., et al. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb. Cell Fact. 2013, 12:53.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 53
-
-
Ilmen, M.1
-
28
-
-
33646866584
-
Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid
-
Ishida N., et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl. Biochem. Biotechnol. 2006, 131:795-807.
-
(2006)
Appl. Biochem. Biotechnol.
, vol.131
, pp. 795-807
-
-
Ishida, N.1
-
29
-
-
69949187997
-
Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid
-
Ikushima S., et al. Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci. Biotechnol. Biochem. 2009, 73:1818-1824.
-
(2009)
Biosci. Biotechnol. Biochem.
, vol.73
, pp. 1818-1824
-
-
Ikushima, S.1
-
30
-
-
70349952276
-
Genome shuffling: Progress and applications for phenotype improvement
-
Gong J., et al. Genome shuffling: Progress and applications for phenotype improvement. Biotechnol. Adv. 2009, 27:996-1005.
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 996-1005
-
-
Gong, J.1
-
31
-
-
34147150291
-
Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus
-
Wang Y., et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 2007, 129:510-515.
-
(2007)
J. Biotechnol.
, vol.129
, pp. 510-515
-
-
Wang, Y.1
-
32
-
-
84876466444
-
Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification
-
Ye L., et al. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresour. Technol. 2013, 135:459-463.
-
(2013)
Bioresour. Technol.
, vol.135
, pp. 459-463
-
-
Ye, L.1
-
33
-
-
0029079015
-
Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor
-
Tejayadi S., Cheryan M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl. Microbiol. Biotechnol. 1995, 43:242-248.
-
(1995)
Appl. Microbiol. Biotechnol.
, vol.43
, pp. 242-248
-
-
Tejayadi, S.1
Cheryan, M.2
-
34
-
-
84898817004
-
An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22
-
Zhang Y., et al. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour. Technol. 2014, 158:396-399.
-
(2014)
Bioresour. Technol.
, vol.158
, pp. 396-399
-
-
Zhang, Y.1
-
35
-
-
84873591877
-
Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106
-
Ye L., et al. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour. Technol. 2013, 132:38-44.
-
(2013)
Bioresour. Technol.
, vol.132
, pp. 38-44
-
-
Ye, L.1
-
36
-
-
84874118431
-
Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production
-
Tang Y., et al. Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production. Appl. Microbiol. Biotechnol. 2013, 97:1923-1932.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 1923-1932
-
-
Tang, Y.1
-
37
-
-
67349117703
-
Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials
-
Wee Y.J., Ryu H.W. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour. Technol. 2009, 100:4262-4270.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 4262-4270
-
-
Wee, Y.J.1
Ryu, H.W.2
-
38
-
-
84867100747
-
Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli
-
Wang Y., et al. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 2012, 34:2069-2075.
-
(2012)
Biotechnol. Lett.
, vol.34
, pp. 2069-2075
-
-
Wang, Y.1
-
39
-
-
80052610607
-
Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis
-
Shinkawa S., et al. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl. Microbiol. Biotechnol. 2011, 91:1537-1544.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.91
, pp. 1537-1544
-
-
Shinkawa, S.1
-
40
-
-
84883125839
-
Efficient production of L-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity
-
Yang X., et al. Efficient production of L-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol. Biofuels 2013, 6:124.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 124
-
-
Yang, X.1
-
41
-
-
84868334617
-
Engineering a cyanobacterial cell factory for production of lactic acid
-
Angermayr S.A., et al. Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 2012, 78:7098-7106.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 7098-7106
-
-
Angermayr, S.A.1
-
42
-
-
84888095603
-
Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
-
Varman A., et al. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 2013, 12:117.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 117
-
-
Varman, A.1
-
43
-
-
82755197372
-
Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose
-
Wang Q., et al. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18920-18925.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 18920-18925
-
-
Wang, Q.1
-
44
-
-
0034135549
-
Factors affecting the fermentative lactic acid production from renewable resources
-
Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 2000, 26:87-107.
-
(2000)
Enzyme Microb. Technol.
, vol.26
, pp. 87-107
-
-
Hofvendahl, K.1
Hahn-Hägerdal, B.2
-
45
-
-
79959884465
-
Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation
-
Papagianni M., Avramidis N. Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb. Technol. 2011, 49:197-202.
-
(2011)
Enzyme Microb. Technol.
, vol.49
, pp. 197-202
-
-
Papagianni, M.1
Avramidis, N.2
-
46
-
-
78651066205
-
Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature
-
Ge X.Y., et al. Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Appl. Microbiol. Biotechnol. 2011, 89:73-78.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 73-78
-
-
Ge, X.Y.1
-
47
-
-
39649110843
-
Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus
-
Yu L., et al. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J. Biotechnol. 2008, 134:154-159.
-
(2008)
J. Biotechnol.
, vol.134
, pp. 154-159
-
-
Yu, L.1
-
48
-
-
84856275260
-
A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance
-
Wu C., et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl. Microbiol. Biotechnol. 2012, 93:707-722.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.93
, pp. 707-722
-
-
Wu, C.1
-
49
-
-
84878635519
-
Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B
-
Zhao J., et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 2013, 12:57.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 57
-
-
Zhao, J.1
-
50
-
-
58149377566
-
Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain
-
Okano K., et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Appl. Environ. Microbiol. 2009, 75:462-467.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 462-467
-
-
Okano, K.1
-
51
-
-
82455205649
-
Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum
-
Yoshida S., et al. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 2011, 92:67-76.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.92
, pp. 67-76
-
-
Yoshida, S.1
-
52
-
-
84855355113
-
Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain
-
Tamakawa H., et al. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J. Biosci. Bioeng. 2012, 113:73-75.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 73-75
-
-
Tamakawa, H.1
-
53
-
-
79960243513
-
The direct conversion of xylan to lactic acid by Lactobacillus brevis transformed with a xylanase gene
-
Hu C-Y., et al. The direct conversion of xylan to lactic acid by Lactobacillus brevis transformed with a xylanase gene. Green Chem. 2011, 13:1729-1734.
-
(2011)
Green Chem.
, vol.13
, pp. 1729-1734
-
-
Hu, C.-Y.1
-
54
-
-
84861076549
-
Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress
-
Zhang J., et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioprocess Eng. 2012, 17:283-289.
-
(2012)
Biotechnol. Bioprocess Eng.
, vol.17
, pp. 283-289
-
-
Zhang, J.1
-
55
-
-
85042458079
-
Genome-shuffling-improved acid tolerance and lactic acid production in Lactobacillus plantarum for commercialization
-
Triratna L., et al. Genome-shuffling-improved acid tolerance and lactic acid production in Lactobacillus plantarum for commercialization. Microbiol. Indones. 2011, 5:21-26.
-
(2011)
Microbiol. Indones.
, vol.5
, pp. 21-26
-
-
Triratna, L.1
-
56
-
-
28944440280
-
Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production
-
Kadam S.R., et al. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem. 2006, 41:120-126.
-
(2006)
Process Biochem.
, vol.41
, pp. 120-126
-
-
Kadam, S.R.1
-
57
-
-
54849437265
-
Strain improvement of Lactobacillus delbrueckii using nitrous acid mutation for L-lactic acid production
-
John R., Madhavan Nampoothiri K. Strain improvement of Lactobacillus delbrueckii using nitrous acid mutation for L-lactic acid production. World J. Microbiol. Biotechnol. 2008, 24:3105-3109.
-
(2008)
World J. Microbiol. Biotechnol.
, vol.24
, pp. 3105-3109
-
-
John, R.1
Madhavan Nampoothiri, K.2
-
58
-
-
1542268884
-
Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants
-
Bai D-M., et al. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 2004, 18:41-48.
-
(2004)
Biochem. Eng. J.
, vol.18
, pp. 41-48
-
-
Bai, D.-M.1
-
59
-
-
84877135608
-
Directed evolution as a powerful synthetic biology tool
-
Cobb R.E., et al. Directed evolution as a powerful synthetic biology tool. Methods 2013, 60:81-90.
-
(2013)
Methods
, vol.60
, pp. 81-90
-
-
Cobb, R.E.1
-
60
-
-
51949107835
-
Progress in metabolic engineering of Saccharomyces cerevisiae
-
Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 379-412
-
-
Nevoigt, E.1
-
61
-
-
79955085746
-
Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification
-
Luhe A.L., et al. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Biotechnol. Lett. 2011, 33:1007-1011.
-
(2011)
Biotechnol. Lett.
, vol.33
, pp. 1007-1011
-
-
Luhe, A.L.1
|