메뉴 건너뛰기




Volumn 32, Issue 12, 2014, Pages 637-644

Metabolic engineering as a tool for enhanced lactic acid production

Author keywords

Acid tolerance; Carbon source; Fermentation parameters; Lactic acid production; Lactic acid purity; Metabolic engineering

Indexed keywords

COST ENGINEERING; FERMENTATION; LACTIC ACID; METABOLISM; SUBSTRATES;

EID: 84918505385     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.10.005     Document Type: Review
Times cited : (80)

References (61)
  • 1
    • 79952538039 scopus 로고    scopus 로고
    • Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid
    • Abdel-Rahman M.A., et al. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid. Appl. Microbiol. Biotechnol. 2011, 89:1039-1049.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 1039-1049
    • Abdel-Rahman, M.A.1
  • 2
    • 33646490414 scopus 로고    scopus 로고
    • Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor
    • Wee Y.J., et al. Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. J. Ind. Microbiol. Biotechnol. 2006, 33:431-435.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 431-435
    • Wee, Y.J.1
  • 3
    • 77953317627 scopus 로고    scopus 로고
    • D-(-)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24
    • Singhvi M., et al. D-(-)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 2010, 12:1106-1109.
    • (2010) Green Chem. , vol.12 , pp. 1106-1109
    • Singhvi, M.1
  • 5
    • 80053459756 scopus 로고    scopus 로고
    • Biotechnological routes based on lactic acid production from biomass
    • Gao C., et al. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 2011, 29:930-939.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 930-939
    • Gao, C.1
  • 6
    • 84998881026 scopus 로고    scopus 로고
    • Draft genome sequence of a new homofermentative, lactic acid-producing Enterococcus faecalis isolate, CBRD01
    • Christopher L.P., et al. Draft genome sequence of a new homofermentative, lactic acid-producing Enterococcus faecalis isolate, CBRD01. Genome Announc. 2014, 2:e00147-e214.
    • (2014) Genome Announc. , vol.2 , pp. e00147-e214
    • Christopher, L.P.1
  • 7
    • 77955226866 scopus 로고    scopus 로고
    • An overview of the recent developments in polylactide (PLA) research
    • Madhavan Nampoothiri K., et al. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101:8493-8501.
    • (2010) Bioresour. Technol. , vol.101 , pp. 8493-8501
    • Madhavan Nampoothiri, K.1
  • 8
    • 84923310679 scopus 로고    scopus 로고
    • Production of lactic acid using a new homofermentative Enterococcus faecalis isolate
    • Published online June 3, 2014
    • Subramanian M.R., et al. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb. Biotechnol. 2014, Published online June 3, 2014. 10.1111/1751-7915.12133.
    • (2014) Microb. Biotechnol.
    • Subramanian, M.R.1
  • 9
    • 0036643903 scopus 로고    scopus 로고
    • Properties of lactic acid based polymers and their correlation with composition
    • Södergård A., Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27:1123-1163.
    • (2002) Prog. Polym. Sci. , vol.27 , pp. 1123-1163
    • Södergård, A.1    Stolt, M.2
  • 10
    • 0032194734 scopus 로고    scopus 로고
    • A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies
    • Amass W., et al. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47:89-144.
    • (1998) Polym. Int. , vol.47 , pp. 89-144
    • Amass, W.1
  • 11
    • 84875244489 scopus 로고    scopus 로고
    • Lactic acid properties, applications and production: A review
    • Martinez F.A.C., et al. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30:70-83.
    • (2013) Trends Food Sci. Technol. , vol.30 , pp. 70-83
    • Martinez, F.A.C.1
  • 12
    • 79955978048 scopus 로고    scopus 로고
    • Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol
    • Ramírez-López C.A., et al. Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol. J. Chem. Technol. Biotechnol. 2011, 86:867-874.
    • (2011) J. Chem. Technol. Biotechnol. , vol.86 , pp. 867-874
    • Ramírez-López, C.A.1
  • 13
    • 84911407097 scopus 로고    scopus 로고
    • The current status and future expectations in industrial production of lactic acid by lactic acid bacteria
    • InTech, M. Kongo (Ed.)
    • Taskila S., Ojamo H. The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes 2013, 615-632. InTech. M. Kongo (Ed.).
    • (2013) Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes , pp. 615-632
    • Taskila, S.1    Ojamo, H.2
  • 14
    • 82955162743 scopus 로고    scopus 로고
    • Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
    • Abdel-Rahman M.A., et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2010, 156:286-301.
    • (2010) J. Biotechnol. , vol.156 , pp. 286-301
    • Abdel-Rahman, M.A.1
  • 15
    • 77954254857 scopus 로고    scopus 로고
    • Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol
    • Mazumdar S., et al. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 2010, 76:4327-4336.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4327-4336
    • Mazumdar, S.1
  • 16
    • 84872767064 scopus 로고    scopus 로고
    • Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli
    • Mazumdar S., et al. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb. Cell Fact. 2013, 12:1-11.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 1-11
    • Mazumdar, S.1
  • 17
    • 84890844710 scopus 로고    scopus 로고
    • Efficient bioconversion of crude glycerol from biodiesel to optically pure D-lactate by metabolically engineered Escherichia coli
    • Chen X., et al. Efficient bioconversion of crude glycerol from biodiesel to optically pure D-lactate by metabolically engineered Escherichia coli. Green Chem. 2014, 16:342-350.
    • (2014) Green Chem. , vol.16 , pp. 342-350
    • Chen, X.1
  • 18
    • 84884374539 scopus 로고    scopus 로고
    • Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients
    • Wang Y., et al. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients. Bioresour. Technol. 2013, 148:394-400.
    • (2013) Bioresour. Technol. , vol.148 , pp. 394-400
    • Wang, Y.1
  • 19
    • 0033823567 scopus 로고    scopus 로고
    • Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid
    • Kyla-Nikkila K., et al. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl. Environ. Microbiol. 2000, 66:3835-3841.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 3835-3841
    • Kyla-Nikkila, K.1
  • 20
    • 80051546043 scopus 로고    scopus 로고
    • D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum
    • Jia X., et al. D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2011, 27:2117-2124.
    • (2011) World J. Microbiol. Biotechnol. , vol.27 , pp. 2117-2124
    • Jia, X.1
  • 21
    • 33745630935 scopus 로고    scopus 로고
    • Lactic acid: recent advances in products, processes and technologies - a review
    • Datta R., Henry M. Lactic acid: recent advances in products, processes and technologies - a review. J. Chem. Technol. Biotechnol. 2006, 81:1119-1129.
    • (2006) J. Chem. Technol. Biotechnol. , vol.81 , pp. 1119-1129
    • Datta, R.1    Henry, M.2
  • 22
    • 77957731883 scopus 로고    scopus 로고
    • Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent
    • Qin J., et al. Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour. Technol. 2010, 101:7570-7576.
    • (2010) Bioresour. Technol. , vol.101 , pp. 7570-7576
    • Qin, J.1
  • 23
    • 0035989644 scopus 로고    scopus 로고
    • Genome shuffling of Lactobacillus for improved acid tolerance
    • Patnaik R., et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 2002, 20:707-712.
    • (2002) Nat. Biotechnol. , vol.20 , pp. 707-712
    • Patnaik, R.1
  • 24
    • 77951768065 scopus 로고    scopus 로고
    • Strain improvement of Lactobacillus lactis for D-lactic acid production
    • Joshi D.S., et al. Strain improvement of Lactobacillus lactis for D-lactic acid production. Biotechnol. Lett. 2010, 32:517-520.
    • (2010) Biotechnol. Lett. , vol.32 , pp. 517-520
    • Joshi, D.S.1
  • 25
    • 79960083590 scopus 로고    scopus 로고
    • Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance
    • Carvalho A.L., et al. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl. Environ. Microbiol. 2011, 77:4189-4199.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4189-4199
    • Carvalho, A.L.1
  • 26
    • 84859488379 scopus 로고    scopus 로고
    • Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524
    • Trip H., et al. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524. J. Biol. Chem. 2012, 287:11195-11204.
    • (2012) J. Biol. Chem. , vol.287 , pp. 11195-11204
    • Trip, H.1
  • 27
    • 84878004318 scopus 로고    scopus 로고
    • Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases
    • Ilmen M., et al. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb. Cell Fact. 2013, 12:53.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 53
    • Ilmen, M.1
  • 28
    • 33646866584 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid
    • Ishida N., et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl. Biochem. Biotechnol. 2006, 131:795-807.
    • (2006) Appl. Biochem. Biotechnol. , vol.131 , pp. 795-807
    • Ishida, N.1
  • 29
    • 69949187997 scopus 로고    scopus 로고
    • Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid
    • Ikushima S., et al. Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci. Biotechnol. Biochem. 2009, 73:1818-1824.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 1818-1824
    • Ikushima, S.1
  • 30
    • 70349952276 scopus 로고    scopus 로고
    • Genome shuffling: Progress and applications for phenotype improvement
    • Gong J., et al. Genome shuffling: Progress and applications for phenotype improvement. Biotechnol. Adv. 2009, 27:996-1005.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 996-1005
    • Gong, J.1
  • 31
    • 34147150291 scopus 로고    scopus 로고
    • Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus
    • Wang Y., et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 2007, 129:510-515.
    • (2007) J. Biotechnol. , vol.129 , pp. 510-515
    • Wang, Y.1
  • 32
    • 84876466444 scopus 로고    scopus 로고
    • Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification
    • Ye L., et al. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresour. Technol. 2013, 135:459-463.
    • (2013) Bioresour. Technol. , vol.135 , pp. 459-463
    • Ye, L.1
  • 33
    • 0029079015 scopus 로고
    • Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor
    • Tejayadi S., Cheryan M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl. Microbiol. Biotechnol. 1995, 43:242-248.
    • (1995) Appl. Microbiol. Biotechnol. , vol.43 , pp. 242-248
    • Tejayadi, S.1    Cheryan, M.2
  • 34
    • 84898817004 scopus 로고    scopus 로고
    • An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22
    • Zhang Y., et al. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour. Technol. 2014, 158:396-399.
    • (2014) Bioresour. Technol. , vol.158 , pp. 396-399
    • Zhang, Y.1
  • 35
    • 84873591877 scopus 로고    scopus 로고
    • Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106
    • Ye L., et al. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour. Technol. 2013, 132:38-44.
    • (2013) Bioresour. Technol. , vol.132 , pp. 38-44
    • Ye, L.1
  • 36
    • 84874118431 scopus 로고    scopus 로고
    • Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production
    • Tang Y., et al. Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production. Appl. Microbiol. Biotechnol. 2013, 97:1923-1932.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 1923-1932
    • Tang, Y.1
  • 37
    • 67349117703 scopus 로고    scopus 로고
    • Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials
    • Wee Y.J., Ryu H.W. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour. Technol. 2009, 100:4262-4270.
    • (2009) Bioresour. Technol. , vol.100 , pp. 4262-4270
    • Wee, Y.J.1    Ryu, H.W.2
  • 38
    • 84867100747 scopus 로고    scopus 로고
    • Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli
    • Wang Y., et al. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 2012, 34:2069-2075.
    • (2012) Biotechnol. Lett. , vol.34 , pp. 2069-2075
    • Wang, Y.1
  • 39
    • 80052610607 scopus 로고    scopus 로고
    • Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis
    • Shinkawa S., et al. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl. Microbiol. Biotechnol. 2011, 91:1537-1544.
    • (2011) Appl. Microbiol. Biotechnol. , vol.91 , pp. 1537-1544
    • Shinkawa, S.1
  • 40
    • 84883125839 scopus 로고    scopus 로고
    • Efficient production of L-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity
    • Yang X., et al. Efficient production of L-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol. Biofuels 2013, 6:124.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 124
    • Yang, X.1
  • 41
    • 84868334617 scopus 로고    scopus 로고
    • Engineering a cyanobacterial cell factory for production of lactic acid
    • Angermayr S.A., et al. Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 2012, 78:7098-7106.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7098-7106
    • Angermayr, S.A.1
  • 42
    • 84888095603 scopus 로고    scopus 로고
    • Photoautotrophic production of D-lactic acid in an engineered cyanobacterium
    • Varman A., et al. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb. Cell Fact. 2013, 12:117.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 117
    • Varman, A.1
  • 43
    • 82755197372 scopus 로고    scopus 로고
    • Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose
    • Wang Q., et al. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18920-18925.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18920-18925
    • Wang, Q.1
  • 44
    • 0034135549 scopus 로고    scopus 로고
    • Factors affecting the fermentative lactic acid production from renewable resources
    • Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 2000, 26:87-107.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 87-107
    • Hofvendahl, K.1    Hahn-Hägerdal, B.2
  • 45
    • 79959884465 scopus 로고    scopus 로고
    • Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation
    • Papagianni M., Avramidis N. Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb. Technol. 2011, 49:197-202.
    • (2011) Enzyme Microb. Technol. , vol.49 , pp. 197-202
    • Papagianni, M.1    Avramidis, N.2
  • 46
    • 78651066205 scopus 로고    scopus 로고
    • Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature
    • Ge X.Y., et al. Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Appl. Microbiol. Biotechnol. 2011, 89:73-78.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 73-78
    • Ge, X.Y.1
  • 47
    • 39649110843 scopus 로고    scopus 로고
    • Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus
    • Yu L., et al. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J. Biotechnol. 2008, 134:154-159.
    • (2008) J. Biotechnol. , vol.134 , pp. 154-159
    • Yu, L.1
  • 48
    • 84856275260 scopus 로고    scopus 로고
    • A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance
    • Wu C., et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl. Microbiol. Biotechnol. 2012, 93:707-722.
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , pp. 707-722
    • Wu, C.1
  • 49
    • 84878635519 scopus 로고    scopus 로고
    • Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B
    • Zhao J., et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 2013, 12:57.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 57
    • Zhao, J.1
  • 50
    • 58149377566 scopus 로고    scopus 로고
    • Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain
    • Okano K., et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Appl. Environ. Microbiol. 2009, 75:462-467.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 462-467
    • Okano, K.1
  • 51
    • 82455205649 scopus 로고    scopus 로고
    • Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum
    • Yoshida S., et al. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 2011, 92:67-76.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , pp. 67-76
    • Yoshida, S.1
  • 52
    • 84855355113 scopus 로고    scopus 로고
    • Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain
    • Tamakawa H., et al. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J. Biosci. Bioeng. 2012, 113:73-75.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 73-75
    • Tamakawa, H.1
  • 53
    • 79960243513 scopus 로고    scopus 로고
    • The direct conversion of xylan to lactic acid by Lactobacillus brevis transformed with a xylanase gene
    • Hu C-Y., et al. The direct conversion of xylan to lactic acid by Lactobacillus brevis transformed with a xylanase gene. Green Chem. 2011, 13:1729-1734.
    • (2011) Green Chem. , vol.13 , pp. 1729-1734
    • Hu, C.-Y.1
  • 54
    • 84861076549 scopus 로고    scopus 로고
    • Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress
    • Zhang J., et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioprocess Eng. 2012, 17:283-289.
    • (2012) Biotechnol. Bioprocess Eng. , vol.17 , pp. 283-289
    • Zhang, J.1
  • 55
    • 85042458079 scopus 로고    scopus 로고
    • Genome-shuffling-improved acid tolerance and lactic acid production in Lactobacillus plantarum for commercialization
    • Triratna L., et al. Genome-shuffling-improved acid tolerance and lactic acid production in Lactobacillus plantarum for commercialization. Microbiol. Indones. 2011, 5:21-26.
    • (2011) Microbiol. Indones. , vol.5 , pp. 21-26
    • Triratna, L.1
  • 56
    • 28944440280 scopus 로고    scopus 로고
    • Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production
    • Kadam S.R., et al. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem. 2006, 41:120-126.
    • (2006) Process Biochem. , vol.41 , pp. 120-126
    • Kadam, S.R.1
  • 57
    • 54849437265 scopus 로고    scopus 로고
    • Strain improvement of Lactobacillus delbrueckii using nitrous acid mutation for L-lactic acid production
    • John R., Madhavan Nampoothiri K. Strain improvement of Lactobacillus delbrueckii using nitrous acid mutation for L-lactic acid production. World J. Microbiol. Biotechnol. 2008, 24:3105-3109.
    • (2008) World J. Microbiol. Biotechnol. , vol.24 , pp. 3105-3109
    • John, R.1    Madhavan Nampoothiri, K.2
  • 58
    • 1542268884 scopus 로고    scopus 로고
    • Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants
    • Bai D-M., et al. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 2004, 18:41-48.
    • (2004) Biochem. Eng. J. , vol.18 , pp. 41-48
    • Bai, D.-M.1
  • 59
    • 84877135608 scopus 로고    scopus 로고
    • Directed evolution as a powerful synthetic biology tool
    • Cobb R.E., et al. Directed evolution as a powerful synthetic biology tool. Methods 2013, 60:81-90.
    • (2013) Methods , vol.60 , pp. 81-90
    • Cobb, R.E.1
  • 60
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 61
    • 79955085746 scopus 로고    scopus 로고
    • Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification
    • Luhe A.L., et al. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Biotechnol. Lett. 2011, 33:1007-1011.
    • (2011) Biotechnol. Lett. , vol.33 , pp. 1007-1011
    • Luhe, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.