-
1
-
-
0020321767
-
Novel proteinaceous infectious particles cause scrapie
-
Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216:136-144.
-
(1982)
Science
, vol.216
, pp. 136-144
-
-
Prusiner, S.B.1
-
3
-
-
78649417132
-
The prion hypothesis: from biological anomaly to basic regulatory mechanism
-
Tuite M.F., Serio T.R. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 2010, 11:823-833.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 823-833
-
-
Tuite, M.F.1
Serio, T.R.2
-
4
-
-
0028308104
-
[URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae
-
Wickner R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994, 264:566-569.
-
(1994)
Science
, vol.264
, pp. 566-569
-
-
Wickner, R.B.1
-
5
-
-
63049091236
-
A systematic survey identifies prions and illuminates sequence features of prionogenic proteins
-
Alberti S., et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009, 137:146-158.
-
(2009)
Cell
, vol.137
, pp. 146-158
-
-
Alberti, S.1
-
6
-
-
84859985750
-
A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress
-
Suzuki G., et al. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012, 336:355-359.
-
(2012)
Science
, vol.336
, pp. 355-359
-
-
Suzuki, G.1
-
7
-
-
80053569870
-
The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility
-
Saupe S.J. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin. Cell Dev. Biol. 2011, 22:460-468.
-
(2011)
Semin. Cell Dev. Biol.
, vol.22
, pp. 460-468
-
-
Saupe, S.J.1
-
8
-
-
75749134925
-
Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation
-
Si K., et al. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010, 140:421-435.
-
(2010)
Cell
, vol.140
, pp. 421-435
-
-
Si, K.1
-
9
-
-
84862776939
-
Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory
-
Majumdar A., et al. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 2012, 148:515-529.
-
(2012)
Cell
, vol.148
, pp. 515-529
-
-
Majumdar, A.1
-
10
-
-
84875605133
-
Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS
-
Kim H.J., et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495:467-473.
-
(2013)
Nature
, vol.495
, pp. 467-473
-
-
Kim, H.J.1
-
11
-
-
84882801549
-
Altered ribostasis: RNA-protein granules in degenerative disorders
-
Ramaswami M., et al. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 2013, 154:727-736.
-
(2013)
Cell
, vol.154
, pp. 727-736
-
-
Ramaswami, M.1
-
12
-
-
84883688262
-
Self-propagation of pathogenic protein aggregates in neurodegenerative diseases
-
Jucker M., Walker L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013, 501:45-51.
-
(2013)
Nature
, vol.501
, pp. 45-51
-
-
Jucker, M.1
Walker, L.C.2
-
13
-
-
58049217490
-
RNA recognition and signal transduction by RIG-I-like receptors
-
Yoneyama M., Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 2009, 227:54-65.
-
(2009)
Immunol. Rev.
, vol.227
, pp. 54-65
-
-
Yoneyama, M.1
Fujita, T.2
-
14
-
-
33750976374
-
5'-Triphosphate RNA is the ligand for RIG-I
-
Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
-
15
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
-
16
-
-
84908192059
-
Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
-
Goubau D., et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 2014, 514:372-375.
-
(2014)
Nature
, vol.514
, pp. 372-375
-
-
Goubau, D.1
-
17
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
-
18
-
-
84862994793
-
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
-
Jiang X., et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012, 36:959-973.
-
(2012)
Immunity
, vol.36
, pp. 959-973
-
-
Jiang, X.1
-
19
-
-
24144461689
-
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
-
Seth R.B., et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 2005, 122:669-682.
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
-
20
-
-
84882705934
-
MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
-
Liu S., et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2013, 2:e00785.
-
(2013)
Elife
, vol.2
, pp. e00785
-
-
Liu, S.1
-
21
-
-
84862777437
-
Helical assembly in the death domain (DD) superfamily
-
Ferrao R., Wu H. Helical assembly in the death domain (DD) superfamily. Curr. Opin. Struct. Biol. 2012, 22:241-247.
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 241-247
-
-
Ferrao, R.1
Wu, H.2
-
22
-
-
33846702221
-
Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex
-
Park H.H., et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 2007, 128:533-546.
-
(2007)
Cell
, vol.128
, pp. 533-546
-
-
Park, H.H.1
-
23
-
-
84884563162
-
Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly
-
Qiao Q., et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol. Cell 2013, 51:766-779.
-
(2013)
Mol. Cell
, vol.51
, pp. 766-779
-
-
Qiao, Q.1
-
24
-
-
2342629277
-
The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes
-
Sun L., et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 2004, 14:289-301.
-
(2004)
Mol. Cell
, vol.14
, pp. 289-301
-
-
Sun, L.1
-
25
-
-
27144440476
-
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
-
Meylan E., et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005, 437:1167-1172.
-
(2005)
Nature
, vol.437
, pp. 1167-1172
-
-
Meylan, E.1
-
26
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
-
Kawai T., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005, 6:981-988.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 981-988
-
-
Kawai, T.1
-
27
-
-
24944538819
-
VISA is an adapter protein required for virus-triggered IFN-β signaling
-
Xu L.G., et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 2005, 19:727-740.
-
(2005)
Mol. Cell
, vol.19
, pp. 727-740
-
-
Xu, L.G.1
-
28
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
Hou F., et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011, 146:448-461.
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
-
29
-
-
84898747432
-
Structural basis for the prion-like MAVS filaments in antiviral innate immunity
-
Xu H., et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 2014, 3:e01489.
-
(2014)
Elife
, vol.3
, pp. e01489
-
-
Xu, H.1
-
30
-
-
77956041261
-
Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast
-
Alberti S., et al. Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol. 2010, 470:709-734.
-
(2010)
Methods Enzymol.
, vol.470
, pp. 709-734
-
-
Alberti, S.1
-
31
-
-
84896381627
-
Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation
-
Cai X., et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 2014, 156:1207-1222.
-
(2014)
Cell
, vol.156
, pp. 1207-1222
-
-
Cai, X.1
-
32
-
-
38649089789
-
The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I
-
Cui S., et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol. Cell 2008, 29:169-179.
-
(2008)
Mol. Cell
, vol.29
, pp. 169-179
-
-
Cui, S.1
-
33
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang F., et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 2011, 479:423-427.
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
-
34
-
-
80054685883
-
Structural insights into RNA recognition by RIG-I
-
Luo D., et al. Structural insights into RNA recognition by RIG-I. Cell 2011, 147:409-422.
-
(2011)
Cell
, vol.147
, pp. 409-422
-
-
Luo, D.1
-
35
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski E., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
-
36
-
-
84883759334
-
RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner
-
Peisley A., et al. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 2013, 51:573-583.
-
(2013)
Mol. Cell
, vol.51
, pp. 573-583
-
-
Peisley, A.1
-
37
-
-
84899957213
-
Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
-
Peisley A., et al. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 2014, 509:110-114.
-
(2014)
Nature
, vol.509
, pp. 110-114
-
-
Peisley, A.1
-
38
-
-
84859427527
-
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA
-
Berke I.C., Modis Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 2012, 31:1714-1726.
-
(2012)
EMBO J.
, vol.31
, pp. 1714-1726
-
-
Berke, I.C.1
Modis, Y.2
-
39
-
-
84862909216
-
Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition
-
Peisley A., et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21010-21015.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 21010-21015
-
-
Peisley, A.1
-
40
-
-
84872604349
-
Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
-
Wu B., et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013, 152:276-289.
-
(2013)
Cell
, vol.152
, pp. 276-289
-
-
Wu, B.1
-
41
-
-
84898776236
-
Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
-
Kuniyoshi K., et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5646-5651.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 5646-5651
-
-
Kuniyoshi, K.1
-
42
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446:916-920.
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
-
43
-
-
78650189572
-
The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
-
Oshiumi H., et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 2010, 8:496-509.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 496-509
-
-
Oshiumi, H.1
-
44
-
-
41849132440
-
Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain
-
Potter J.A., et al. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Struct. Biol. 2008, 8:11.
-
(2008)
BMC Struct. Biol.
, vol.8
, pp. 11
-
-
Potter, J.A.1
-
45
-
-
84906342978
-
Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I
-
Wu B., et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 2014, 55:511-523.
-
(2014)
Mol. Cell
, vol.55
, pp. 511-523
-
-
Wu, B.1
-
46
-
-
34548615995
-
The structural basis of yeast prion strain variants
-
Toyama B.H., et al. The structural basis of yeast prion strain variants. Nature 2007, 449:233-237.
-
(2007)
Nature
, vol.449
, pp. 233-237
-
-
Toyama, B.H.1
-
47
-
-
84894486685
-
Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics
-
Frederick K.K., et al. Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Chem. Biol. 2014, 21:295-305.
-
(2014)
Chem. Biol.
, vol.21
, pp. 295-305
-
-
Frederick, K.K.1
-
48
-
-
0036671894
-
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β
-
Martinon F., et al. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 2002, 10:417-426.
-
(2002)
Mol. Cell
, vol.10
, pp. 417-426
-
-
Martinon, F.1
-
49
-
-
84901310586
-
Mechanisms and functions of inflammasomes
-
Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell 2014, 157:1013-1022.
-
(2014)
Cell
, vol.157
, pp. 1013-1022
-
-
Lamkanfi, M.1
Dixit, V.M.2
-
50
-
-
84896332642
-
Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
-
Lu A., et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014, 156:1193-1206.
-
(2014)
Cell
, vol.156
, pp. 1193-1206
-
-
Lu, A.1
-
51
-
-
77955390094
-
Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
-
Broz P., et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 2010, 207:1745-1755.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1745-1755
-
-
Broz, P.1
-
52
-
-
84859506059
-
Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes
-
Daskalov A., et al. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS ONE 2012, 7:e34854.
-
(2012)
PLoS ONE
, vol.7
, pp. e34854
-
-
Daskalov, A.1
-
53
-
-
66649122286
-
Interleukin-1β and the autoinflammatory diseases
-
Dinarello C.A. Interleukin-1β and the autoinflammatory diseases. N. Engl. J. Med. 2009, 360:2467-2470.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 2467-2470
-
-
Dinarello, C.A.1
-
54
-
-
84904646033
-
The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response
-
Baroja-Mazo A., et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 2014, 15:738-748.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 738-748
-
-
Baroja-Mazo, A.1
-
55
-
-
84904692363
-
The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation
-
Franklin B.S., et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat. Immunol. 2014, 15:727-737.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 727-737
-
-
Franklin, B.S.1
-
56
-
-
84871682946
-
The mechanism of toxicity in HET-S/HET-s prion incompatibility
-
Seuring C., et al. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 2012, 10:e1001451.
-
(2012)
PLoS Biol.
, vol.10
, pp. e1001451
-
-
Seuring, C.1
-
57
-
-
70349559403
-
Endotoxin tolerance: new mechanisms, molecules and clinical significance
-
Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30:475-487.
-
(2009)
Trends Immunol.
, vol.30
, pp. 475-487
-
-
Biswas, S.K.1
Lopez-Collazo, E.2
-
58
-
-
8844247180
-
Mechanism of prion propagation: amyloid growth occurs by monomer addition
-
Collins S.R., et al. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2004, 2:e321.
-
(2004)
PLoS Biol.
, vol.2
, pp. e321
-
-
Collins, S.R.1
-
59
-
-
72149118250
-
An analytical solution to the kinetics of breakable filament assembly
-
Knowles T.P., et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009, 326:1533-1537.
-
(2009)
Science
, vol.326
, pp. 1533-1537
-
-
Knowles, T.P.1
-
60
-
-
0029052468
-
Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]
-
Chernoff Y.O., et al. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995, 268:880-884.
-
(1995)
Science
, vol.268
, pp. 880-884
-
-
Chernoff, Y.O.1
|