메뉴 건너뛰기




Volumn 35, Issue 12, 2014, Pages 622-630

Prion-like polymerization as a signaling mechanism

Author keywords

Pattern recognition receptors; Prion like polymerization; Signal transduction; Signaling

Indexed keywords

ADAPTOR PROTEIN; CRYOPYRIN; INFLAMMASOME; PATTERN RECOGNITION RECEPTOR; POLYUBIQUITIN; PRION PROTEIN; RETINOIC ACID INDUCIBLE PROTEIN I;

EID: 84915752004     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.10.003     Document Type: Review
Times cited : (33)

References (60)
  • 1
    • 0020321767 scopus 로고
    • Novel proteinaceous infectious particles cause scrapie
    • Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216:136-144.
    • (1982) Science , vol.216 , pp. 136-144
    • Prusiner, S.B.1
  • 3
    • 78649417132 scopus 로고    scopus 로고
    • The prion hypothesis: from biological anomaly to basic regulatory mechanism
    • Tuite M.F., Serio T.R. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 2010, 11:823-833.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 823-833
    • Tuite, M.F.1    Serio, T.R.2
  • 4
    • 0028308104 scopus 로고
    • [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae
    • Wickner R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994, 264:566-569.
    • (1994) Science , vol.264 , pp. 566-569
    • Wickner, R.B.1
  • 5
    • 63049091236 scopus 로고    scopus 로고
    • A systematic survey identifies prions and illuminates sequence features of prionogenic proteins
    • Alberti S., et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009, 137:146-158.
    • (2009) Cell , vol.137 , pp. 146-158
    • Alberti, S.1
  • 6
    • 84859985750 scopus 로고    scopus 로고
    • A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress
    • Suzuki G., et al. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012, 336:355-359.
    • (2012) Science , vol.336 , pp. 355-359
    • Suzuki, G.1
  • 7
    • 80053569870 scopus 로고    scopus 로고
    • The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility
    • Saupe S.J. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin. Cell Dev. Biol. 2011, 22:460-468.
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 460-468
    • Saupe, S.J.1
  • 8
    • 75749134925 scopus 로고    scopus 로고
    • Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation
    • Si K., et al. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010, 140:421-435.
    • (2010) Cell , vol.140 , pp. 421-435
    • Si, K.1
  • 9
    • 84862776939 scopus 로고    scopus 로고
    • Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory
    • Majumdar A., et al. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 2012, 148:515-529.
    • (2012) Cell , vol.148 , pp. 515-529
    • Majumdar, A.1
  • 10
    • 84875605133 scopus 로고    scopus 로고
    • Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS
    • Kim H.J., et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495:467-473.
    • (2013) Nature , vol.495 , pp. 467-473
    • Kim, H.J.1
  • 11
    • 84882801549 scopus 로고    scopus 로고
    • Altered ribostasis: RNA-protein granules in degenerative disorders
    • Ramaswami M., et al. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 2013, 154:727-736.
    • (2013) Cell , vol.154 , pp. 727-736
    • Ramaswami, M.1
  • 12
    • 84883688262 scopus 로고    scopus 로고
    • Self-propagation of pathogenic protein aggregates in neurodegenerative diseases
    • Jucker M., Walker L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013, 501:45-51.
    • (2013) Nature , vol.501 , pp. 45-51
    • Jucker, M.1    Walker, L.C.2
  • 13
    • 58049217490 scopus 로고    scopus 로고
    • RNA recognition and signal transduction by RIG-I-like receptors
    • Yoneyama M., Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 2009, 227:54-65.
    • (2009) Immunol. Rev. , vol.227 , pp. 54-65
    • Yoneyama, M.1    Fujita, T.2
  • 14
    • 33750976374 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA is the ligand for RIG-I
    • Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1
  • 15
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1
  • 16
    • 84908192059 scopus 로고    scopus 로고
    • Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
    • Goubau D., et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 2014, 514:372-375.
    • (2014) Nature , vol.514 , pp. 372-375
    • Goubau, D.1
  • 17
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1
  • 18
    • 84862994793 scopus 로고    scopus 로고
    • Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
    • Jiang X., et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012, 36:959-973.
    • (2012) Immunity , vol.36 , pp. 959-973
    • Jiang, X.1
  • 19
    • 24144461689 scopus 로고    scopus 로고
    • Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
    • Seth R.B., et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 2005, 122:669-682.
    • (2005) Cell , vol.122 , pp. 669-682
    • Seth, R.B.1
  • 20
    • 84882705934 scopus 로고    scopus 로고
    • MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
    • Liu S., et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2013, 2:e00785.
    • (2013) Elife , vol.2 , pp. e00785
    • Liu, S.1
  • 21
    • 84862777437 scopus 로고    scopus 로고
    • Helical assembly in the death domain (DD) superfamily
    • Ferrao R., Wu H. Helical assembly in the death domain (DD) superfamily. Curr. Opin. Struct. Biol. 2012, 22:241-247.
    • (2012) Curr. Opin. Struct. Biol. , vol.22 , pp. 241-247
    • Ferrao, R.1    Wu, H.2
  • 22
    • 33846702221 scopus 로고    scopus 로고
    • Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex
    • Park H.H., et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 2007, 128:533-546.
    • (2007) Cell , vol.128 , pp. 533-546
    • Park, H.H.1
  • 23
    • 84884563162 scopus 로고    scopus 로고
    • Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly
    • Qiao Q., et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol. Cell 2013, 51:766-779.
    • (2013) Mol. Cell , vol.51 , pp. 766-779
    • Qiao, Q.1
  • 24
    • 2342629277 scopus 로고    scopus 로고
    • The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes
    • Sun L., et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 2004, 14:289-301.
    • (2004) Mol. Cell , vol.14 , pp. 289-301
    • Sun, L.1
  • 25
    • 27144440476 scopus 로고    scopus 로고
    • Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
    • Meylan E., et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005, 437:1167-1172.
    • (2005) Nature , vol.437 , pp. 1167-1172
    • Meylan, E.1
  • 26
    • 27144440523 scopus 로고    scopus 로고
    • IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
    • Kawai T., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005, 6:981-988.
    • (2005) Nat. Immunol. , vol.6 , pp. 981-988
    • Kawai, T.1
  • 27
    • 24944538819 scopus 로고    scopus 로고
    • VISA is an adapter protein required for virus-triggered IFN-β signaling
    • Xu L.G., et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 2005, 19:727-740.
    • (2005) Mol. Cell , vol.19 , pp. 727-740
    • Xu, L.G.1
  • 28
    • 79961133270 scopus 로고    scopus 로고
    • MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
    • Hou F., et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011, 146:448-461.
    • (2011) Cell , vol.146 , pp. 448-461
    • Hou, F.1
  • 29
    • 84898747432 scopus 로고    scopus 로고
    • Structural basis for the prion-like MAVS filaments in antiviral innate immunity
    • Xu H., et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 2014, 3:e01489.
    • (2014) Elife , vol.3 , pp. e01489
    • Xu, H.1
  • 30
    • 77956041261 scopus 로고    scopus 로고
    • Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast
    • Alberti S., et al. Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol. 2010, 470:709-734.
    • (2010) Methods Enzymol. , vol.470 , pp. 709-734
    • Alberti, S.1
  • 31
    • 84896381627 scopus 로고    scopus 로고
    • Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation
    • Cai X., et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 2014, 156:1207-1222.
    • (2014) Cell , vol.156 , pp. 1207-1222
    • Cai, X.1
  • 32
    • 38649089789 scopus 로고    scopus 로고
    • The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I
    • Cui S., et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol. Cell 2008, 29:169-179.
    • (2008) Mol. Cell , vol.29 , pp. 169-179
    • Cui, S.1
  • 33
    • 81555204380 scopus 로고    scopus 로고
    • Structural basis of RNA recognition and activation by innate immune receptor RIG-I
    • Jiang F., et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 2011, 479:423-427.
    • (2011) Nature , vol.479 , pp. 423-427
    • Jiang, F.1
  • 34
    • 80054685883 scopus 로고    scopus 로고
    • Structural insights into RNA recognition by RIG-I
    • Luo D., et al. Structural insights into RNA recognition by RIG-I. Cell 2011, 147:409-422.
    • (2011) Cell , vol.147 , pp. 409-422
    • Luo, D.1
  • 35
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
    • Kowalinski E., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1
  • 36
    • 84883759334 scopus 로고    scopus 로고
    • RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner
    • Peisley A., et al. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 2013, 51:573-583.
    • (2013) Mol. Cell , vol.51 , pp. 573-583
    • Peisley, A.1
  • 37
    • 84899957213 scopus 로고    scopus 로고
    • Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
    • Peisley A., et al. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 2014, 509:110-114.
    • (2014) Nature , vol.509 , pp. 110-114
    • Peisley, A.1
  • 38
    • 84859427527 scopus 로고    scopus 로고
    • MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA
    • Berke I.C., Modis Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 2012, 31:1714-1726.
    • (2012) EMBO J. , vol.31 , pp. 1714-1726
    • Berke, I.C.1    Modis, Y.2
  • 39
    • 84862909216 scopus 로고    scopus 로고
    • Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition
    • Peisley A., et al. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:21010-21015.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 21010-21015
    • Peisley, A.1
  • 40
    • 84872604349 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
    • Wu B., et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013, 152:276-289.
    • (2013) Cell , vol.152 , pp. 276-289
    • Wu, B.1
  • 41
    • 84898776236 scopus 로고    scopus 로고
    • Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
    • Kuniyoshi K., et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5646-5651.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5646-5651
    • Kuniyoshi, K.1
  • 42
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446:916-920.
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1
  • 43
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • Oshiumi H., et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 2010, 8:496-509.
    • (2010) Cell Host Microbe , vol.8 , pp. 496-509
    • Oshiumi, H.1
  • 44
    • 41849132440 scopus 로고    scopus 로고
    • Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain
    • Potter J.A., et al. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Struct. Biol. 2008, 8:11.
    • (2008) BMC Struct. Biol. , vol.8 , pp. 11
    • Potter, J.A.1
  • 45
    • 84906342978 scopus 로고    scopus 로고
    • Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I
    • Wu B., et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 2014, 55:511-523.
    • (2014) Mol. Cell , vol.55 , pp. 511-523
    • Wu, B.1
  • 46
    • 34548615995 scopus 로고    scopus 로고
    • The structural basis of yeast prion strain variants
    • Toyama B.H., et al. The structural basis of yeast prion strain variants. Nature 2007, 449:233-237.
    • (2007) Nature , vol.449 , pp. 233-237
    • Toyama, B.H.1
  • 47
    • 84894486685 scopus 로고    scopus 로고
    • Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics
    • Frederick K.K., et al. Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Chem. Biol. 2014, 21:295-305.
    • (2014) Chem. Biol. , vol.21 , pp. 295-305
    • Frederick, K.K.1
  • 48
    • 0036671894 scopus 로고    scopus 로고
    • The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β
    • Martinon F., et al. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 2002, 10:417-426.
    • (2002) Mol. Cell , vol.10 , pp. 417-426
    • Martinon, F.1
  • 49
    • 84901310586 scopus 로고    scopus 로고
    • Mechanisms and functions of inflammasomes
    • Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell 2014, 157:1013-1022.
    • (2014) Cell , vol.157 , pp. 1013-1022
    • Lamkanfi, M.1    Dixit, V.M.2
  • 50
    • 84896332642 scopus 로고    scopus 로고
    • Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
    • Lu A., et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014, 156:1193-1206.
    • (2014) Cell , vol.156 , pp. 1193-1206
    • Lu, A.1
  • 51
    • 77955390094 scopus 로고    scopus 로고
    • Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella
    • Broz P., et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 2010, 207:1745-1755.
    • (2010) J. Exp. Med. , vol.207 , pp. 1745-1755
    • Broz, P.1
  • 52
    • 84859506059 scopus 로고    scopus 로고
    • Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes
    • Daskalov A., et al. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS ONE 2012, 7:e34854.
    • (2012) PLoS ONE , vol.7 , pp. e34854
    • Daskalov, A.1
  • 53
    • 66649122286 scopus 로고    scopus 로고
    • Interleukin-1β and the autoinflammatory diseases
    • Dinarello C.A. Interleukin-1β and the autoinflammatory diseases. N. Engl. J. Med. 2009, 360:2467-2470.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 2467-2470
    • Dinarello, C.A.1
  • 54
    • 84904646033 scopus 로고    scopus 로고
    • The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response
    • Baroja-Mazo A., et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 2014, 15:738-748.
    • (2014) Nat. Immunol. , vol.15 , pp. 738-748
    • Baroja-Mazo, A.1
  • 55
    • 84904692363 scopus 로고    scopus 로고
    • The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation
    • Franklin B.S., et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat. Immunol. 2014, 15:727-737.
    • (2014) Nat. Immunol. , vol.15 , pp. 727-737
    • Franklin, B.S.1
  • 56
    • 84871682946 scopus 로고    scopus 로고
    • The mechanism of toxicity in HET-S/HET-s prion incompatibility
    • Seuring C., et al. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 2012, 10:e1001451.
    • (2012) PLoS Biol. , vol.10 , pp. e1001451
    • Seuring, C.1
  • 57
    • 70349559403 scopus 로고    scopus 로고
    • Endotoxin tolerance: new mechanisms, molecules and clinical significance
    • Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30:475-487.
    • (2009) Trends Immunol. , vol.30 , pp. 475-487
    • Biswas, S.K.1    Lopez-Collazo, E.2
  • 58
    • 8844247180 scopus 로고    scopus 로고
    • Mechanism of prion propagation: amyloid growth occurs by monomer addition
    • Collins S.R., et al. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2004, 2:e321.
    • (2004) PLoS Biol. , vol.2 , pp. e321
    • Collins, S.R.1
  • 59
    • 72149118250 scopus 로고    scopus 로고
    • An analytical solution to the kinetics of breakable filament assembly
    • Knowles T.P., et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009, 326:1533-1537.
    • (2009) Science , vol.326 , pp. 1533-1537
    • Knowles, T.P.1
  • 60
    • 0029052468 scopus 로고
    • Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]
    • Chernoff Y.O., et al. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995, 268:880-884.
    • (1995) Science , vol.268 , pp. 880-884
    • Chernoff, Y.O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.