메뉴 건너뛰기




Volumn , Issue , 2013, Pages 660-667

Multipath sparse coding using hierarchical matching pursuit

Author keywords

Deep Learning; Feature Learning; Object Recognition; Sparse Coding

Indexed keywords

BUILDING BLOCKES; DEEP LEARNING; FEATURE LEARNING; HIERARCHICAL MATCHING; IMAGE REPRESENTATIONS; ORTHOGONAL MATCHING PURSUIT; RECONSTRUCTION ERROR; SPARSE CODING;

EID: 84887371778     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.91     Document Type: Conference Paper
Times cited : (180)

References (34)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • 2
    • M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing, 54(11):4311-4322, 2006. 2
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 85162018819 scopus 로고    scopus 로고
    • Kernel descriptors for visual recognition
    • 1
    • L. Bo, X. Ren, and D. Fox. Kernel Descriptors for Visual Recognition. In NIPS, 2010. 1
    • (2010) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 3
    • 85162387004 scopus 로고    scopus 로고
    • Hierarchical matching pursuit for image classification: Architecture and fast algorithms
    • 1, 2, 6
    • L. Bo, X. Ren, and D. Fox. Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms. In NIPS, 2011. 1, 2, 6
    • (2011) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 4
    • 84872231524 scopus 로고    scopus 로고
    • Unsupervised feature learning for rgb-d based object recognition
    • 2, 7
    • L. Bo, X. Ren, and D. Fox. Unsupervised Feature Learning for RGB-D Based Object Recognition. In ISER, 2012. 2, 7
    • (2012) ISER
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 5
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-Way local pooling for image recognition
    • 2, 6
    • Y. Boureau, N. Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the Locals: Multi-Way Local Pooling for Image Recognition. In ICCV, 2011. 2, 6
    • (2011) ICCV
    • Boureau, Y.1    Roux, N.2    Bach, F.3    Ponce, J.4    Lecun, Y.5
  • 7
    • 34249687049 scopus 로고    scopus 로고
    • Sparsity and incoherence in compressive sampling
    • 2
    • E. Candes and J. Romberg. Sparsity and Incoherence in Compressive Sampling. Inverse problems, 23:969, 2007. 2
    • (2007) Inverse Problems , vol.23 , pp. 969
    • Candes, E.1    Romberg, J.2
  • 8
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • 6
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The Devil is in the Details: an Evaluation of Recent Feature Encoding Methods. In BMVC, 2011. 6
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 9
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • 2, 6
    • A. Coates and A. Ng. The Importance of Encoding versus Training with Sparse Coding and Vector Quantization. In ICML, 2011. 2, 6
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • 7
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part-Based Models. IEEE PAMI, 32:1627-1645, 2010. 7
    • (2010) IEEE PAMI , vol.32 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 11
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • 6
    • P. Gehler and S. Nowozin. On Feature Combination for Multiclass Object Classification. In ICCV, 2009. 6
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 1, 2
    • G. Hinton, S. Osindero, and Y. Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527-1554, 2006. 1, 2
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 13
    • 80052901219 scopus 로고    scopus 로고
    • Learning a discriminative dictionary for sparse coding via label consistent k-svd
    • 6
    • Z. Jiang, Z. Lin, and L. Davis. Learning a Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD. In CVPR, 2011. 6
    • (2011) CVPR
    • Jiang, Z.1    Lin, Z.2    Davis, L.3
  • 14
    • 85162523582 scopus 로고    scopus 로고
    • Portmanteau vocabularies for multi-cue image representations
    • 7
    • F. Khan, J. van deWeijer, A. Bagdanov, and M. Vanrell. Portmanteau Vocabularies for Multi-cue Image Representations. NIPS, 2011. 7
    • (2011) NIPS
    • Khan, F.1    Van Deweijer, J.2    Bagdanov, A.3    Vanrell, M.4
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 2
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. In NIPS, 2012. 1, 2
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 4, 6
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR, 2006. 4, 6
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 18
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2
    • H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In ICML, 2009. 2
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 19
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • 2
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative Learned Dictionaries for Local Image Analysis. In CVPR, 2008. 2
    • (2008) CVPR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 20
    • 84866648984 scopus 로고    scopus 로고
    • Local naive bayes nearest neighbor for image classification
    • 6
    • S. McCann and D. Lowe. Local Naive Bayes Nearest Neighbor for image classification. In CVPR, 2012. 6
    • (2012) CVPR
    • McCann, S.1    Lowe, D.2
  • 21
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 2
    • B. Olshausen and D. Field. Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 381:607-609, 1996. 2
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 22
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • 7
    • M. Pandey and S. Lazebnik. Scene Recognition and Weakly Supervised Object Localization with Deformable Part-Based Models. In ICCV, 2011. 7
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 23
    • 84866674135 scopus 로고    scopus 로고
    • Reconfigurable models for scene recognition
    • 7
    • S. N. Parizi, J. Oberlin, and P. Felzenszwalb. Reconfigurable Models for Scene Recognition. In CVPR, 2012. 7
    • (2012) CVPR
    • Parizi, S.N.1    Oberlin, J.2    Felzenszwalb, P.3
  • 26
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • 3
    • I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and Clustering via Dictionary Learning with Structured Incoherence and Shared Features. In CVPR, 2010. 3
    • (2010) CVPR
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 27
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • 6
    • K. Sohn, D. Jung, H. Lee, and A. Hero III. Efficient Learning of Sparse, Distributed, Convolutional Feature Representations for Object Recognition. In ICCV, 2011. 6
    • (2011) ICCV
    • Sohn, K.1    Jung, D.2    Lee, H.3    Hero III, A.4
  • 28
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 2, 6
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Guo. Locality-constrained Linear Coding for Image Classification. In CVPR, 2010. 2, 6
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Guo, Y.6
  • 29
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 6
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid Matching using Sparse Coding for Image Classification. In CVPR, 2009. 6
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 30
    • 84877743496 scopus 로고    scopus 로고
    • Unsupervised template learning for fine-grained object recognition
    • 7
    • S. Yang, L. Bo, J. Wang, and L. Shapiro. Unsupervised template learning for fine-grained object recognition. In NIPS, 2012. 7
    • (2012) NIPS
    • Yang, S.1    Bo, L.2    Wang, J.3    Shapiro, L.4
  • 31
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • 7
    • B. Yao, A. Khosla, and L. Fei-Fei. Combining Randomization and Discrimination for Fine-grained Image Categorization. CVPR, 2011. 7
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3
  • 32
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • 1, 2, 6
    • K. Yu, Y. Lin, and J. Lafferty. Learning Image Representations from the Pixel Level via Hierarchical Sparse Coding. In CVPR, 2011. 1, 2, 6
    • (2011) CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 33
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • 2
    • M. Zeiler, G. Taylor, and R. Fergus. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning. In ICCV, 2011. 2
    • (2011) ICCV
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3
  • 34
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • 7
    • N. Zhang, R. Farrell, and T. Darrell. Pose Pooling Kernels for Sub-category Recognition. CVPR, 2012. 7
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.