메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2643-2650

Efficient learning of sparse, distributed, convolutional feature representations for object recognition

Author keywords

[No Author keywords available]

Indexed keywords

CALTECH; CLASSIFICATION PERFORMANCE; DATA SETS; EFFICIENT LEARNING; EXPRESSIVE POWER; FEATURE REPRESENTATION; GAUSSIAN MIXTURE MODEL; HYPER-PARAMETER; IMAGE REPRESENTATIONS; MIXTURE MODEL; RESTRICTED BOLTZMANN MACHINE; SPATIAL CONTEXT; STATE-OF-THE-ART PERFORMANCE; TRAINING METHODS;

EID: 84863049755     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126554     Document Type: Conference Paper
Times cited : (112)

References (27)
  • 1
    • 0002939740 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. Lowe, "Object recognition from local scale-invariant features," in ICCV, 1999. 1, 2
    • (1999) ICCV , vol.1 , pp. 2
    • Lowe, D.1
  • 2
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1, 2
    • N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in CVPR, 2005. 1, 2
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 3
    • 33745872957 scopus 로고    scopus 로고
    • Hyperfeatures-multilevel local coding for visual recognition
    • 1
    • A. Agarwal and B. Triggs, "Hyperfeatures-multilevel local coding for visual recognition," ECCV, pp. 30-43, 2006. 1
    • (2006) ECCV , pp. 30-43
    • Agarwal, A.1    Triggs, B.2
  • 4
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 1, 6
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," in CVPR, 2004. 1, 6
    • (2004) CVPR
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 5
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1, 2, 7
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in CVPR, 2006. 1, 2, 7
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 6
    • 50649119191 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka, "Object categorization by learned universal visual dictionary," in ICCV, 2005. 1
    • (2005) ICCV , pp. 1
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 7
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • 1, 2, 7
    • Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning mid-level features for recognition," in CVPR, 2010. 1, 2, 7
    • (2010) CVPR
    • Boureau, Y.-L.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 8
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • 1
    • K. Yu, T. Zhang, and Y. Gong, "Nonlinear learning using local coordinate coding," in NIPS, 2009. 1
    • (2009) NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3
  • 9
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 1, 2, 6, 7
    • J. Yang, K. Yu, Y. Gong, and T. S. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in CVPR, pp. 1794-1801, 2009. 1, 2, 6, 7
    • (2009) CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 1
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. 1
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 12
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • 1
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of sparse representations with an energy-based model," in NIPS, pp. 1137-1144, 2006. 1
    • (2006) NIPS , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 14
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 1
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, pp. 607-609, 1996. 1
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 1
    • G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. 1
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 17
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief network model for visual area V2
    • 1, 3, 5
    • H. Lee, C. Ekanadham, and A. Y. Ng, "Sparse deep belief network model for visual area V2," in NIPS, 2008. 1, 3, 5
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 18
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 2, 6, 7
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Locality-constrained linear coding for image classification," in CVPR, 2010. 2, 6, 7
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 19
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2, 3
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in ICML, 2009. 2, 3
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 21
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • 3
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002. 3
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 22
    • 77956000948 scopus 로고    scopus 로고
    • Factored 3-way Restricted Boltzmann Machines for Modeling Natural Images
    • 5
    • M. Ranzato, A. Krizhevsky, and G. E. Hinton, "Factored 3-way Restricted Boltzmann Machines for Modeling Natural Images," in AISTATS, 2010. 5
    • (2010) AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.E.3
  • 25
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • 6
    • R. Fan, K. Chang, C. Hsieh, X.Wang, and C. Lin, "LIBLINEAR: A library for large linear classification," JMLR, vol. 9, pp. 1871-1874, 2008. 6
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.1    Chang, K.2    Hsieh, C.3    Wang, X.4    Lin, C.5
  • 26
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of singlelayer networks in unsupervised feature learning
    • 7
    • A. Coates, H. Lee, and A. Y. Ng, "An analysis of singlelayer networks in unsupervised feature learning," in AISTATS, 2011. 7
    • (2011) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.