메뉴 건너뛰기




Volumn 129, Issue 6, 2007, Pages 1153-1164

Nonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes

Author keywords

CELLCYCLE

Indexed keywords

CENH3 PROTEIN; CSE4 PROTEIN; DNA; HISTONE H2A; HISTONE H2B; HISTONE H3; HISTONE H4; NONHISTONE PROTEIN; RECOMBINANT PROTEIN; SCM3 PROTEIN; UNCLASSIFIED DRUG;

EID: 34250173486     PISSN: 00928674     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cell.2007.04.026     Document Type: Article
Times cited : (248)

References (65)
  • 1
    • 3042794631 scopus 로고    scopus 로고
    • Building the centromere: from foundation proteins to 3D organization
    • Amor D.J., Kalitsis P., Sumer H., and Choo K.H. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14 (2004) 359-368
    • (2004) Trends Cell Biol. , vol.14 , pp. 359-368
    • Amor, D.J.1    Kalitsis, P.2    Sumer, H.3    Choo, K.H.4
  • 2
    • 0030602813 scopus 로고    scopus 로고
    • SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box
    • Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J.W., and Elledge S.J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86 (1996) 263-274
    • (1996) Cell , vol.86 , pp. 263-274
    • Bai, C.1    Sen, P.2    Hofmann, K.3    Ma, L.4    Goebl, M.5    Harper, J.W.6    Elledge, S.J.7
  • 3
    • 0032519306 scopus 로고    scopus 로고
    • An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast
    • Belli G., Gari E., Piedrafita L., Aldea M., and Herrero E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26 (1998) 942-947
    • (1998) Nucleic Acids Res. , vol.26 , pp. 942-947
    • Belli, G.1    Gari, E.2    Piedrafita, L.3    Aldea, M.4    Herrero, E.5
  • 5
    • 0033597717 scopus 로고    scopus 로고
    • Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region
    • Blat Y., and Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98 (1999) 249-259
    • (1999) Cell , vol.98 , pp. 249-259
    • Blat, Y.1    Kleckner, N.2
  • 7
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower M.D., Sullivan B.A., and Karpen G.H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2 (2002) 319-330
    • (2002) Dev. Cell , vol.2 , pp. 319-330
    • Blower, M.D.1    Sullivan, B.A.2    Karpen, G.H.3
  • 8
    • 33646007027 scopus 로고    scopus 로고
    • Centromere formation: from epigenetics to self-assembly
    • Carroll C.W., and Straight A.F. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol. 16 (2006) 70-78
    • (2006) Trends Cell Biol. , vol.16 , pp. 70-78
    • Carroll, C.W.1    Straight, A.F.2
  • 9
    • 0033811682 scopus 로고    scopus 로고
    • The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain
    • Chen Y., Baker R.E., Keith K.C., Harris K., Stoler S., and Fitzgerald-Hayes M. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20 (2000) 7037-7048
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7037-7048
    • Chen, Y.1    Baker, R.E.2    Keith, K.C.3    Harris, K.4    Stoler, S.5    Fitzgerald-Hayes, M.6
  • 10
    • 0004002022 scopus 로고    scopus 로고
    • Oxford University Press, New York
    • Choo K. The Centromere (1997), Oxford University Press, New York
    • (1997) The Centromere
    • Choo, K.1
  • 11
    • 0037459109 scopus 로고    scopus 로고
    • Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling
    • Cleveland D.W., Mao Y., and Sullivan K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112 (2003) 407-421
    • (2003) Cell , vol.112 , pp. 407-421
    • Cleveland, D.W.1    Mao, Y.2    Sullivan, K.F.3
  • 12
    • 7944224836 scopus 로고    scopus 로고
    • Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant
    • Collins K.A., Furuyama S., and Biggins S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14 (2004) 1968-1972
    • (2004) Curr. Biol. , vol.14 , pp. 1968-1972
    • Collins, K.A.1    Furuyama, S.2    Biggins, S.3
  • 13
    • 28644448227 scopus 로고    scopus 로고
    • De novo kinetochore assembly requires the centromeric histone H3 variant
    • Collins K.A., Castillo A.R., Tatsutani S.Y., and Biggins S. De novo kinetochore assembly requires the centromeric histone H3 variant. Mol. Biol. Cell 16 (2005) 5649-5660
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5649-5660
    • Collins, K.A.1    Castillo, A.R.2    Tatsutani, S.Y.3    Biggins, S.4
  • 14
    • 0030602823 scopus 로고    scopus 로고
    • Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression
    • Connelly C., and Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86 (1996) 275-285
    • (1996) Cell , vol.86 , pp. 275-285
    • Connelly, C.1    Hieter, P.2
  • 15
    • 2442520137 scopus 로고    scopus 로고
    • Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae
    • Crotti L.B., and Basrai M.A. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J. 23 (2004) 1804-1814
    • (2004) EMBO J. , vol.23 , pp. 1804-1814
    • Crotti, L.B.1    Basrai, M.A.2
  • 16
    • 33751216131 scopus 로고    scopus 로고
    • Centromeres put epigenetics in the driver's seat
    • Dawe R.K., and Henikoff S. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31 (2006) 662-669
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 662-669
    • Dawe, R.K.1    Henikoff, S.2
  • 17
    • 0028213449 scopus 로고
    • Heat-inducible degron: a method for constructing temperature-sensitive mutants
    • Dohmen R.J., Wu P., and Varshavsky A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263 (1994) 1273-1276
    • (1994) Science , vol.263 , pp. 1273-1276
    • Dohmen, R.J.1    Wu, P.2    Varshavsky, A.3
  • 18
    • 0018267877 scopus 로고
    • The histone core complex: an octamer assembled by two sets of protein-protein interactions
    • Eickbush T.H., and Moudrianakis E.N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17 (1978) 4955-4964
    • (1978) Biochemistry , vol.17 , pp. 4955-4964
    • Eickbush, T.H.1    Moudrianakis, E.N.2
  • 20
    • 33646589676 scopus 로고    scopus 로고
    • Chaperone-mediated assembly of centromeric chromatin in vitro
    • Furuyama T., Dalal Y., and Henikoff S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl. Acad. Sci. USA 103 (2006) 6172-6177
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 6172-6177
    • Furuyama, T.1    Dalal, Y.2    Henikoff, S.3
  • 21
    • 0035044554 scopus 로고    scopus 로고
    • The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain
    • Gardner R.D., Poddar A., Yellman C., Tavormina P.A., Monteagudo M.C., and Burke D.J. The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 157 (2001) 1493-1502
    • (2001) Genetics , vol.157 , pp. 1493-1502
    • Gardner, R.D.1    Poddar, A.2    Yellman, C.3    Tavormina, P.A.4    Monteagudo, M.C.5    Burke, D.J.6
  • 24
    • 0033064319 scopus 로고    scopus 로고
    • Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction
    • Hecht A., and Grunstein M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304 (1999) 399-414
    • (1999) Methods Enzymol. , vol.304 , pp. 399-414
    • Hecht, A.1    Grunstein, M.2
  • 25
    • 15744399172 scopus 로고    scopus 로고
    • Centromeric chromatin: what makes it unique?
    • Henikoff S., and Dalal Y. Centromeric chromatin: what makes it unique?. Curr. Opin. Genet. Dev. 15 (2005) 177-184
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 177-184
    • Henikoff, S.1    Dalal, Y.2
  • 26
    • 33644542460 scopus 로고    scopus 로고
    • Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores
    • Heun P., Erhardt S., Blower M.D., Weiss S., Skora A.D., and Karpen G.H. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10 (2006) 303-315
    • (2006) Dev. Cell , vol.10 , pp. 303-315
    • Heun, P.1    Erhardt, S.2    Blower, M.D.3    Weiss, S.4    Skora, A.D.5    Karpen, G.H.6
  • 28
    • 0031437950 scopus 로고    scopus 로고
    • The case for epigenetic effects on centromere identity and function
    • Karpen G.H., and Allshire R.C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13 (1997) 489-496
    • (1997) Trends Genet. , vol.13 , pp. 489-496
    • Karpen, G.H.1    Allshire, R.C.2
  • 29
    • 0033756555 scopus 로고    scopus 로고
    • CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome
    • Keith K.C., and Fitzgerald-Hayes M. CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome. Genetics 156 (2000) 973-981
    • (2000) Genetics , vol.156 , pp. 973-981
    • Keith, K.C.1    Fitzgerald-Hayes, M.2
  • 30
    • 0035462116 scopus 로고    scopus 로고
    • Evolutionary conservation between budding yeast and human kinetochores
    • Kitagawa K., and Hieter P. Evolutionary conservation between budding yeast and human kinetochores. Nat. Rev. Mol. Cell Biol. 2 (2001) 678-687
    • (2001) Nat. Rev. Mol. Cell Biol. , vol.2 , pp. 678-687
    • Kitagawa, K.1    Hieter, P.2
  • 31
    • 0016211838 scopus 로고
    • Chromatin structure; oligomers of the histones
    • Kornberg R.D., and Thomas J.O. Chromatin structure; oligomers of the histones. Science 184 (1974) 865-868
    • (1974) Science , vol.184 , pp. 865-868
    • Kornberg, R.D.1    Thomas, J.O.2
  • 33
    • 0346155805 scopus 로고    scopus 로고
    • The spindle assembly and spindle position checkpoints
    • Lew D.J., and Burke D.J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37 (2003) 251-282
    • (2003) Annu. Rev. Genet. , vol.37 , pp. 251-282
    • Lew, D.J.1    Burke, D.J.2
  • 34
    • 0033039285 scopus 로고    scopus 로고
    • Preparation of nucleosome core particle from recombinant histones
    • Luger K., Rechsteiner T.J., and Richmond T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304 (1999) 3-19
    • (1999) Methods Enzymol. , vol.304 , pp. 3-19
    • Luger, K.1    Rechsteiner, T.J.2    Richmond, T.J.3
  • 36
    • 0036889219 scopus 로고    scopus 로고
    • Conflict begets complexity: the evolution of centromeres
    • Malik H.S., and Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12 (2002) 711-718
    • (2002) Curr. Opin. Genet. Dev. , vol.12 , pp. 711-718
    • Malik, H.S.1    Henikoff, S.2
  • 37
    • 0345255913 scopus 로고    scopus 로고
    • Structure, function, and regulation of budding yeast kinetochores
    • McAinsh A.D., Tytell J.D., and Sorger P.K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19 (2003) 519-539
    • (2003) Annu. Rev. Cell Dev. Biol. , vol.19 , pp. 519-539
    • McAinsh, A.D.1    Tytell, J.D.2    Sorger, P.K.3
  • 38
    • 0033197708 scopus 로고    scopus 로고
    • The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences
    • Megee P.C., Mistrot C., Guacci V., and Koshland D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4 (1999) 445-450
    • (1999) Mol. Cell , vol.4 , pp. 445-450
    • Megee, P.C.1    Mistrot, C.2    Guacci, V.3    Koshland, D.4
  • 39
    • 0031440948 scopus 로고    scopus 로고
    • Budding yeast centromere composition and assembly as revealed by in vivo cross-linking
    • Meluh P.B., and Koshland D. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11 (1997) 3401-3412
    • (1997) Genes Dev. , vol.11 , pp. 3401-3412
    • Meluh, P.B.1    Koshland, D.2
  • 40
    • 0032483564 scopus 로고    scopus 로고
    • Cse4p is a component of the core centromere of Saccharomyces cerevisiae
    • Meluh P.B., Yang P., Glowczewski L., Koshland D., and Smith M.M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94 (1998) 607-613
    • (1998) Cell , vol.94 , pp. 607-613
    • Meluh, P.B.1    Yang, P.2    Glowczewski, L.3    Koshland, D.4    Smith, M.M.5
  • 41
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi P., McAinsh A.D., Rheinbay E., and Sorger P.K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7 (2006) R23
    • (2006) Genome Biol. , vol.7
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 42
    • 0348184963 scopus 로고    scopus 로고
    • ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
    • Mizuguchi G., Shen X., Landry J., Wu W.H., Sen S., and Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303 (2004) 343-348
    • (2004) Science , vol.303 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3    Wu, W.H.4    Sen, S.5    Wu, C.6
  • 43
    • 0034724537 scopus 로고    scopus 로고
    • A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis
    • Nakayama J., Klar A.J., and Grewal S.I. A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 101 (2000) 307-317
    • (2000) Cell , vol.101 , pp. 307-317
    • Nakayama, J.1    Klar, A.J.2    Grewal, S.I.3
  • 45
    • 1542330121 scopus 로고    scopus 로고
    • Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase
    • Obuse C., Yang H., Nozaki N., Goto S., Okazaki T., and Yoda K. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9 (2004) 105-120
    • (2004) Genes Cells , vol.9 , pp. 105-120
    • Obuse, C.1    Yang, H.2    Nozaki, N.3    Goto, S.4    Okazaki, T.5    Yoda, K.6
  • 47
    • 0033135911 scopus 로고    scopus 로고
    • A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore
    • Ortiz J., Stemmann O., Rank S., and Lechner J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13 (1999) 1140-1155
    • (1999) Genes Dev. , vol.13 , pp. 1140-1155
    • Ortiz, J.1    Stemmann, O.2    Rank, S.3    Lechner, J.4
  • 48
    • 0033616592 scopus 로고    scopus 로고
    • Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy
    • Pietrasanta L.I., Thrower D., Hsieh W., Rao S., Stemmann O., Lechner J., Carbon J., and Hansma H. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96 (1999) 3757-3762
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 3757-3762
    • Pietrasanta, L.I.1    Thrower, D.2    Hsieh, W.3    Rao, S.4    Stemmann, O.5    Lechner, J.6    Carbon, J.7    Hansma, H.8
  • 49
    • 33750353597 scopus 로고    scopus 로고
    • Structural and functional dynamics of human centromeric chromatin
    • Schueler M.G., and Sullivan B.A. Structural and functional dynamics of human centromeric chromatin. Annu. Rev. Genomics Hum. Genet. 7 (2006) 301-313
    • (2006) Annu. Rev. Genomics Hum. Genet. , vol.7 , pp. 301-313
    • Schueler, M.G.1    Sullivan, B.A.2
  • 50
    • 0035067367 scopus 로고    scopus 로고
    • Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly
    • Seol J.H., Shevchenko A., Shevchenko A., and Deshaies R.J. Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat. Cell Biol. 3 (2001) 384-391
    • (2001) Nat. Cell Biol. , vol.3 , pp. 384-391
    • Seol, J.H.1    Shevchenko, A.2    Shevchenko, A.3    Deshaies, R.J.4
  • 51
    • 0036141054 scopus 로고    scopus 로고
    • Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae
    • Sharp J.A., Franco A.A., Osley M.A., and Kaufman P.D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16 (2002) 85-100
    • (2002) Genes Dev. , vol.16 , pp. 85-100
    • Sharp, J.A.1    Franco, A.A.2    Osley, M.A.3    Kaufman, P.D.4
  • 52
    • 0141817943 scopus 로고    scopus 로고
    • The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin
    • Sharp J.A., Krawitz D.C., Gardner K.A., Fox C.A., and Kaufman P.D. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev. 17 (2003) 2356-2361
    • (2003) Genes Dev. , vol.17 , pp. 2356-2361
    • Sharp, J.A.1    Krawitz, D.C.2    Gardner, K.A.3    Fox, C.A.4    Kaufman, P.D.5
  • 53
    • 0031049028 scopus 로고    scopus 로고
    • Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites
    • Shelby R.D., Vafa O., and Sullivan K.F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136 (1997) 501-513
    • (1997) J. Cell Biol. , vol.136 , pp. 501-513
    • Shelby, R.D.1    Vafa, O.2    Sullivan, K.F.3
  • 54
    • 0036591877 scopus 로고    scopus 로고
    • Centromeres and variant histones: what, where, when and why?
    • Smith M.M. Centromeres and variant histones: what, where, when and why?. Curr. Opin. Cell Biol. 14 (2002) 279-285
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 279-285
    • Smith, M.M.1
  • 56
    • 0028946805 scopus 로고
    • A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis
    • Stoler S., Keith K.C., Curnick K.E., and Fitzgerald-Hayes M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9 (1995) 573-586
    • (1995) Genes Dev. , vol.9 , pp. 573-586
    • Stoler, S.1    Keith, K.C.2    Curnick, K.E.3    Fitzgerald-Hayes, M.4
  • 57
    • 0033578935 scopus 로고    scopus 로고
    • Identification of cohesin association sites at centromeres and along chromosome arms
    • Tanaka T., Cosma M.P., Wirth K., and Nasmyth K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98 (1999) 847-858
    • (1999) Cell , vol.98 , pp. 847-858
    • Tanaka, T.1    Cosma, M.P.2    Wirth, K.3    Nasmyth, K.4
  • 59
    • 33750716055 scopus 로고    scopus 로고
    • How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly
    • Vos L.J., Famulski J.K., and Chan G.K. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem. Cell Biol. 84 (2006) 619-639
    • (2006) Biochem. Cell Biol. , vol.84 , pp. 619-639
    • Vos, L.J.1    Famulski, J.K.2    Chan, G.K.3
  • 62
    • 3242703137 scopus 로고    scopus 로고
    • Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae
    • Wieland G., Orthaus S., Ohndorf S., Diekmann S., and Hemmerich P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol. Cell. Biol. 24 (2004) 6620-6630
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6620-6630
    • Wieland, G.1    Orthaus, S.2    Ohndorf, S.3    Diekmann, S.4    Hemmerich, P.5
  • 63
    • 28544442465 scopus 로고    scopus 로고
    • Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange
    • Wu W.-H., Alami S., Luk E., Wu C.-H., Sen S., Mizuguchi G., Wei D., and Wu C. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12 (2005) 1064-1071
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1064-1071
    • Wu, W.-H.1    Alami, S.2    Luk, E.3    Wu, C.-H.4    Sen, S.5    Mizuguchi, G.6    Wei, D.7    Wu, C.8
  • 65
    • 0025872050 scopus 로고
    • The centromere-kinetochore complex: a repeat subunit model
    • Zinkowski R.P., Meyne J., and Brinkley B.R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113 (1991) 1091-1110
    • (1991) J. Cell Biol. , vol.113 , pp. 1091-1110
    • Zinkowski, R.P.1    Meyne, J.2    Brinkley, B.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.