메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 638-652

Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans

Author keywords

[No Author keywords available]

Indexed keywords

HISTONE H3;

EID: 84875973583     PISSN: 10889051     EISSN: 15495469     Source Type: Journal    
DOI: 10.1101/gr.141614.112     Document Type: Article
Times cited : (68)

References (58)
  • 1
    • 56549108407 scopus 로고    scopus 로고
    • Epigenetic regulation of centromeric chromatin: Old dogs, new tricks?
    • Allshire RC, Karpen GH. 2008. Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nat Rev Genet 9: 923-937.
    • (2008) Nat Rev Genet , vol.9 , pp. 923-937
    • Allshire, R.C.1    Karpen, G.H.2
  • 3
    • 70350223561 scopus 로고    scopus 로고
    • Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore
    • Anderson M, Haase J, Yeh E, Bloom K. 2009. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol Biol Cell 20: 4131-4139.
    • (2009) Mol Biol Cell , vol.20 , pp. 4131-4139
    • Anderson, M.1    Haase, J.2    Yeh, E.3    Bloom, K.4
  • 4
    • 33749505847 scopus 로고    scopus 로고
    • Formation of functional centromeric chromatin is specified epigenetically in Candida albicans
    • Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci 103: 14877-14882.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 14877-14882
    • Baum, M.1    Sanyal, K.2    Mishra, P.K.3    Thaler, N.4    Carbon, J.5
  • 5
    • 44449161646 scopus 로고    scopus 로고
    • Rapid evolution of yeast centromeres in the absence of drive
    • Bensasson D, Zarowiecki M, Burt A, Koufopanou V. 2008. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178: 2161-2167.
    • (2008) Genetics , vol.178 , pp. 2161-2167
    • Bensasson, D.1    Zarowiecki, M.2    Burt, A.3    Koufopanou, V.4
  • 7
    • 79951709224 scopus 로고    scopus 로고
    • Epigenetic centromere propagation and the nature of CENP-a nucleosomes
    • Black BE, Cleveland DW. 2011. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144: 471-479.
    • (2011) Cell , vol.144 , pp. 471-479
    • Black, B.E.1    Cleveland, D.W.2
  • 8
    • 0024462116 scopus 로고
    • Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae
    • Borts RH, Haber JE. 1989. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123: 69-80.
    • (1989) Genetics , vol.123 , pp. 69-80
    • Borts, R.H.1    Haber, J.E.2
  • 9
    • 0031839901 scopus 로고    scopus 로고
    • Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate transposons and simple repeats
    • Cambareri EB, Aisner R, Carbon J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate transposons and simple repeats. Mol Cell Biol 18: 5465-5477.
    • (1998) Mol Cell Biol , vol.18 , pp. 5465-5477
    • Cambareri, E.B.1    Aisner, R.2    Carbon, J.3
  • 10
    • 0027504355 scopus 로고
    • Construction of an SfiI macrorestriction map of the Candida albicans genome
    • Chu WS, Magee BB, Magee PT. 1993. Construction of an SfiI macrorestriction map of the Candida albicans genome. J Bacteriol 175: 6637-6651.
    • (1993) J Bacteriol , vol.175 , pp. 6637-6651
    • Chu, W.S.1    Magee, B.B.2    Magee, P.T.3
  • 11
    • 0026589379 scopus 로고
    • Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae
    • Detloff P, Petes TD. 1992. Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 12: 1805-1814.
    • (1992) Mol Cell Biol , vol.12 , pp. 1805-1814
    • Detloff, P.1    Petes, T.D.2
  • 12
    • 0023957483 scopus 로고
    • Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe
    • Fishel B, Amstutz H, Baum M, Carbon J, Clarke L. 1988. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8: 754-763.
    • (1988) Mol Cell Biol , vol.8 , pp. 754-763
    • Fishel, B.1    Amstutz, H.2    Baum, M.3    Carbon, J.4    Clarke, L.5
  • 13
    • 37849021647 scopus 로고    scopus 로고
    • Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres
    • Folco HD, Pidoux AL, Urano T, Allshire RC. 2008. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319: 94-97.
    • (2008) Science , vol.319 , pp. 94-97
    • Folco, H.D.1    Pidoux, A.L.2    Urano, T.3    Allshire, R.C.4
  • 14
    • 68749117667 scopus 로고    scopus 로고
    • DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions
    • Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD. 2009. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18: 3178-3193.
    • (2009) Hum Mol Genet , vol.18 , pp. 3178-3193
    • Gopalakrishnan, S.1    Sullivan, B.A.2    Trazzi, S.3    Della Valle, G.4    Robertson, K.D.5
  • 15
    • 77952567987 scopus 로고    scopus 로고
    • Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
    • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576-589.
    • (2010) Mol Cell , vol.38 , pp. 576-589
    • Heinz, S.1    Benner, C.2    Spann, N.3    Bertolino, E.4    Lin, Y.C.5    Laslo, P.6    Cheng, J.X.7    Murre, C.8    Singh, H.9    Glass, C.K.10
  • 16
    • 0035839066 scopus 로고    scopus 로고
    • The centromere paradox: Stable inheritance with rapidly evolving DNA
    • Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science 293: 1098-1102.
    • (2001) Science , vol.293 , pp. 1098-1102
    • Henikoff, S.1    Ahmad, K.2    Malik, H.S.3
  • 17
    • 77954328102 scopus 로고    scopus 로고
    • Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
    • Hicks WM, Kim M, Haber JE. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82-85.
    • (2010) Science , vol.329 , pp. 82-85
    • Hicks, W.M.1    Kim, M.2    Haber, J.E.3
  • 20
    • 45349089291 scopus 로고    scopus 로고
    • Centromere mitotic recombination in mammalian cells
    • Jaco I, Canela A, Vera E, Blasco MA. 2008. Centromere mitotic recombination in mammalian cells. J Cell Biol 181: 885-892.
    • (2008) J Cell Biol , vol.181 , pp. 885-892
    • Jaco, I.1    Canela, A.2    Vera, E.3    Blasco, M.A.4
  • 21
    • 0023833017 scopus 로고
    • Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae
    • Judd SR, Petes TD. 1988. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118: 401-410.
    • (1988) Genetics , vol.118 , pp. 401-410
    • Judd, S.R.1    Petes, T.D.2
  • 24
    • 0026023381 scopus 로고
    • Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats
    • Kuhn RM, Clarke L, Carbon J. 1991. Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci 88: 1306-1310.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 1306-1310
    • Kuhn, R.M.1    Clarke, L.2    Carbon, J.3
  • 25
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120.
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1    O'Carroll, D.2    Rea, S.3    Mechtler, K.4    Jenuwein, T.5
  • 26
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 27
    • 23844434604 scopus 로고    scopus 로고
    • Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species
    • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. 2005. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci 102: 11793-11798.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 11793-11798
    • Lee, H.R.1    Zhang, W.2    Langdon, T.3    Jin, W.4    Yan, H.5    Cheng, Z.6    Jiang, J.7
  • 29
    • 0031058627 scopus 로고    scopus 로고
    • WO-2, a stable aneuploid derivative of Candida albicans strain WO-1, can switch from white to opaque and form hyphae
    • Magee BB, Magee PT. 1997. WO-2, a stable aneuploid derivative of Candida albicans strain WO-1, can switch from white to opaque and form hyphae. Microbiology 143: 289-295.
    • (1997) Microbiology , vol.143 , pp. 289-295
    • Magee, B.B.1    Magee, P.T.2
  • 30
    • 38849140380 scopus 로고    scopus 로고
    • Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans
    • Magee BB, Sanchez MD, Saunders D, Harris D, Berriman M, Magee PT. 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet Biol 45: 338-350.
    • (2008) Fungal Genet Biol , vol.45 , pp. 338-350
    • Magee, B.B.1    Sanchez, M.D.2    Saunders, D.3    Harris, D.4    Berriman, M.5    Magee, P.T.6
  • 31
    • 0026756595 scopus 로고
    • A meiotic gene conversion gradient opposite to the direction of transcription
    • Malone RE, Bullard S, Lundquist S, Kim S, Tarkowski T. 1992. A meiotic gene conversion gradient opposite to the direction of transcription. Nature 359: 154-155.
    • (1992) Nature , vol.359 , pp. 154-155
    • Malone, R.E.1    Bullard, S.2    Lundquist, S.3    Kim, S.4    Tarkowski, T.5
  • 33
    • 40749092486 scopus 로고    scopus 로고
    • Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution
    • Marshall OJ, Chueh AC, Wong LH, Choo KH. 2008. Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82: 261-282.
    • (2008) Am J Hum Genet , vol.82 , pp. 261-282
    • Marshall, O.J.1    Chueh, A.C.2    Wong, L.H.3    Choo, K.H.4
  • 34
    • 34548742303 scopus 로고    scopus 로고
    • Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity
    • Mishra PK, Baum M, Carbon J. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics 278: 455-465.
    • (2007) Mol Genet Genomics , vol.278 , pp. 455-465
    • Mishra, P.K.1    Baum, M.2    Carbon, J.3
  • 35
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly
    • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 37
    • 58149374566 scopus 로고    scopus 로고
    • Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis
    • Padmanabhan S, Thakur J, Siddharthan R, Sanyal K. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci 105: 19797-19802.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 19797-19802
    • Padmanabhan, S.1    Thakur, J.2    Siddharthan, R.3    Sanyal, K.4
  • 38
    • 5044225522 scopus 로고    scopus 로고
    • The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
    • Reuss O, Vik A, Kolter R, Morschhauser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
    • (2004) Gene , vol.341 , pp. 119-127
    • Reuss, O.1    Vik, A.2    Kolter, R.3    Morschhauser, J.4
  • 41
    • 80055121651 scopus 로고    scopus 로고
    • Diversity in requirement of genetic and epigenetic factors for centromere function in fungi
    • Roy B, Sanyal K. 2011. Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. Eukaryot Cell 10: 1384-1395.
    • (2011) Eukaryot Cell , vol.10 , pp. 1384-1395
    • Roy, B.1    Sanyal, K.2
  • 42
    • 84860904683 scopus 로고    scopus 로고
    • How do microbial pathogens make CENs?
    • Sanyal K. 2012. How do microbial pathogens make CENs? PLoS Pathog 8: e1002463.
    • (2012) PLoS Pathog , vol.8
    • Sanyal, K.1
  • 43
    • 0036789919 scopus 로고    scopus 로고
    • The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission
    • Sanyal K, Carbon J. 2002. The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. Proc Natl Acad Sci 99: 12969-12974.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 12969-12974
    • Sanyal, K.1    Carbon, J.2
  • 44
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal K, Baum M, Carbon J. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci 101: 11374-11379.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 11374-11379
    • Sanyal, K.1    Baum, M.2    Carbon, J.3
  • 45
    • 79951482450 scopus 로고    scopus 로고
    • Genomic instability and cancer: An introduction
    • Shen Z. 2011. Genomic instability and cancer: An introduction. J Mol Cell Biol 3: 1-3.
    • (2011) J Mol Cell Biol , vol.3 , pp. 1-3
    • Shen, Z.1
  • 49
    • 78649630221 scopus 로고    scopus 로고
    • Epigenomics of centromere assembly and function
    • Stimpson KM, Sullivan BA. 2010. Epigenomics of centromere assembly and function. Curr Opin Cell Biol 22: 772-780.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 772-780
    • Stimpson, K.M.1    Sullivan, B.A.2
  • 50
    • 0024299142 scopus 로고
    • Meiotic recombination within the centromere of a yeast chromosome
    • Symington LS, Petes TD. 1988. Meiotic recombination within the centromere of a yeast chromosome. Cell 52: 237-240.
    • (1988) Cell , vol.52 , pp. 237-240
    • Symington, L.S.1    Petes, T.D.2
  • 51
    • 0026021439 scopus 로고
    • A large number of tRNA genes are symmetrically located in fission yeast centromeres
    • Takahashi K, Murakami S, Chikashige Y, Niwa O, Yanagida M. 1991. A large number of tRNA genes are symmetrically located in fission yeast centromeres. J Mol Biol 218: 13-17.
    • (1991) J Mol Biol , vol.218 , pp. 13-17
    • Takahashi, K.1    Murakami, S.2    Chikashige, Y.3    Niwa, O.4    Yanagida, M.5
  • 52
    • 0342646931 scopus 로고    scopus 로고
    • Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast
    • Takahashi K, Chen ES, Yanagida M. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215-2219.
    • (2000) Science , vol.288 , pp. 2215-2219
    • Takahashi, K.1    Chen, E.S.2    Yanagida, M.3
  • 53
    • 80053446836 scopus 로고    scopus 로고
    • The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere
    • Thakur J, Sanyal K. 2011. The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell 10: 1295-1305.
    • (2011) Eukaryot Cell , vol.10 , pp. 1295-1305
    • Thakur, J.1    Sanyal, K.2
  • 54
    • 84860555258 scopus 로고    scopus 로고
    • A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans
    • Thakur J, Sanyal K. 2012. A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic yeast Candida albicans. PLoS Genet 8: e1002661.
    • (2012) PLoS Genet , vol.8
    • Thakur, J.1    Sanyal, K.2
  • 56
    • 0027377802 scopus 로고
    • A functional marker centromere with no detectable a-satellite, satellite III, or CENP-B protein: Activation of a latent centromere?
    • Voullaire LE, Slater HR, Petrovic V, Choo KH. 1993. A functional marker centromere with no detectable a-satellite, satellite III, or CENP-B protein: Activation of a latent centromere? Am J Hum Genet 52: 1153-1163.
    • (1993) Am J Hum Genet , vol.52 , pp. 1153-1163
    • Voullaire, L.E.1    Slater, H.R.2    Petrovic, V.3    Choo, K.H.4
  • 57
    • 0031963396 scopus 로고    scopus 로고
    • Neocentromere activity of structurally acentric mini-chromosomes in Drosophila
    • Williams BC, Murphy TD, Goldberg ML, Karpen GH. 1998. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18: 30-37.
    • (1998) Nat Genet , vol.18 , pp. 30-37
    • Williams, B.C.1    Murphy, T.D.2    Goldberg, M.L.3    Karpen, G.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.