메뉴 건너뛰기




Volumn 45, Issue 5, 2014, Pages 2143-2152

Retraction: MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1 (Int J Oncol (2014) 45 (2143-2152) DOI: 10.3892/ijo.2014.2596);MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1

Author keywords

Hepatocellular carcinoma; Lipid metabolism; MicroRNA; Proliferation; SIRT1; SREBP 1c

Indexed keywords

ANTISENSE OLIGONUCLEOTIDE; CHOLESTEROL; FATTY ACID SYNTHASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE; LONG CHAIN FATTY ACID; MICRORNA; MICRORNA 449; SIRTUIN 1; STEROL REGULATORY ELEMENT BINDING PROTEIN 1C; UNCLASSIFIED DRUG; MIRN449 MICRORNA, HUMAN; SIRT1 PROTEIN, HUMAN; STEROL REGULATORY ELEMENT BINDING PROTEIN;

EID: 84907195200     PISSN: 10196439     EISSN: 17912423     Source Type: Journal    
DOI: 10.3892/ijo.2023.5525     Document Type: Erratum
Times cited : (52)

References (74)
  • 1
    • 0036109563 scopus 로고    scopus 로고
    • Prognosis of a large cohort of patients with hepatocellular carcinoma in a single European centre
    • Herold C, Reck T, Fischler P, et al: Prognosis of a large cohort of patients with hepatocellular carcinoma in a single European centre. Liver 22: 23-28, 2002.
    • (2002) Liver , vol.22 , pp. 23-28
    • Herold, C.1    Reck, T.2    Fischler, P.3
  • 2
    • 0034090264 scopus 로고    scopus 로고
    • Hepatocellular carcinoma
    • Okuda K: Hepatocellular carcinoma. J Hepatol 32: 225-237, 2000.
    • (2000) J Hepatol , vol.32 , pp. 225-237
    • Okuda, K.1
  • 3
    • 21244467166 scopus 로고    scopus 로고
    • Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies
    • Bhalla KN: Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23: 3971-3993, 2005.
    • (2005) J Clin Oncol , vol.23 , pp. 3971-3993
    • Bhalla, K.N.1
  • 4
    • 84899507746 scopus 로고    scopus 로고
    • Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle
    • Dowman JK, Hopkins LJ, Reynolds GM, al: Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle. Am J Pathol 184: 1550-1561, 2014.
    • (2014) Am J Pathol , vol.184 , pp. 1550-1561
    • Dowman, J.K.1    Hopkins, L.J.2    Reynolds, G.M.3
  • 5
    • 84899447215 scopus 로고    scopus 로고
    • Obesity-associated mechanisms of hepatocarcinogenesis
    • Karagozian R, Derdák Z and Baffy G: Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism 63: 607-617, 2014.
    • (2014) Metabolism , vol.63 , pp. 607-617
    • Karagozian, R.1    Derdák, Z.2    Baffy, G.3
  • 6
    • 84906263567 scopus 로고    scopus 로고
    • The role of monoacylglycerol lipase (MAGL) in the cancer progress
    • Mar 16, Epub ahead of print)
    • Q in H and Ruan ZH: The role of monoacylglycerol lipase (MAGL) in the cancer progress. Cell Biochem Biophys: Mar 16, 2014 (Epub ahead of print).
    • (2014) Cell Biochem Biophys
    • Qin, H.1    Ruan, Z.H.2
  • 8
    • 0027751663 scopus 로고
    • The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854, 1993.
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 9
    • 0037694970 scopus 로고    scopus 로고
    • The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism
    • Xu P, Vernooy SY, Guo M and Hay BA: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13: 790-795, 2003.
    • (2003) Curr Biol , vol.13 , pp. 790-795
    • Xu, P.1    Vernooy, S.Y.2    Guo, M.3    Hay, B.A.4
  • 10
    • 0027730383 scopus 로고
    • Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans
    • Wightman B, Ha I and Ruvkun G: Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862, 1993.
    • (1993) Cell , vol.75 , pp. 855-862
    • Wightman, B.1    Ha, I.2    Ruvkun, G.3
  • 11
    • 0034708122 scopus 로고    scopus 로고
    • The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
    • Reinhart BJ, Slack FJ, Basson M, et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906, 2000.
    • (2000) Nature , vol.403 , pp. 901-906
    • Reinhart, B.J.1    Slack, F.J.2    Basson, M.3
  • 12
    • 0037418839 scopus 로고    scopus 로고
    • Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila
    • Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25-36, 2003.
    • (2003) Cell , vol.113 , pp. 25-36
    • Brennecke, J.1    Hipfner, D.R.2    Stark, A.3    Russell, R.B.4    Cohen, S.M.5
  • 15
    • 12144290519 scopus 로고    scopus 로고
    • Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers
    • Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999-3004, 2004.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2999-3004
    • Calin, G.A.1    Sevignani, C.2    Dumitru, C.D.3
  • 16
    • 23844555119 scopus 로고    scopus 로고
    • MicroRNA gene expression deregulation inhumanbreast cancer
    • Iorio MV, Ferracin M, Liu CG, et al: MicroRNA gene expression deregulation inhumanbreast cancer. Cancer Res 65: 7065-7070, 2005.
    • (2005) Cancer Res , vol.65 , pp. 7065-7070
    • Iorio, M.V.1    Ferracin, M.2    Liu, C.G.3
  • 17
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature 435: 834-838, 2005.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1    Getz, G.2    Miska, E.A.3
  • 18
    • 20444467290 scopus 로고    scopus 로고
    • A microRNA polycistron as a potential human oncogene
    • He L, Thomson JM, Hemann MT, et al: A microRNA polycistron as a potential human oncogene. Nature 435: 828-833, 2005.
    • (2005) Nature , vol.435 , pp. 828-833
    • He, L.1    Thomson, J.M.2    Hemann, M.T.3
  • 19
    • 33144490646 scopus 로고    scopus 로고
    • A microRNA expression signature of human solid tumors defines cancer gene targets
    • Volinia S, Calin GA, Liu CG, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257-2261, 2006.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 2257-2261
    • Volinia, S.1    Calin, G.A.2    Liu, C.G.3
  • 20
    • 33846190181 scopus 로고    scopus 로고
    • Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181
    • Pekarsky Y, Santanam U, Cimmino A, et al: Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66: 11590-11593, 2006.
    • (2006) Cancer Res , vol.66 , pp. 11590-11593
    • Pekarsky, Y.1    Santanam, U.2    Cimmino, A.3
  • 21
    • 33646780266 scopus 로고    scopus 로고
    • MicroRNAs as a potential magic bullet in cancer
    • Slack FJ and Weidhaas JB: MicroRNAs as a potential magic bullet in cancer. Future Oncol 2: 73-82, 2006.
    • (2006) Future Oncol , vol.2 , pp. 73-82
    • Slack, F.J.1    Weidhaas, J.B.2
  • 22
    • 25444520537 scopus 로고    scopus 로고
    • MiR-15 and miR-16 induce apoptosis by targeting BCL2
    • Cimmino A, Calin GA, Fabbri M, et al: MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944-13949, 2005.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13944-13949
    • Cimmino, A.1    Calin, G.A.2    Fabbri, M.3
  • 23
    • 20044395613 scopus 로고    scopus 로고
    • RAS is regulated by the let-7 microRNA family
    • Johnson SM, Grosshans H, Shingara J, et al: RAS is regulated by the let-7 microRNA family. Cell 120: 635-647, 2005.
    • (2005) Cell , vol.120 , pp. 635-647
    • Johnson, S.M.1    Grosshans, H.2    Shingara, J.3
  • 24
    • 2542626605 scopus 로고    scopus 로고
    • Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival
    • Takamizawa J, Konishi H, Yanagisawa K, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753-3756, 2004.
    • (2004) Cancer Res , vol.64 , pp. 3753-3756
    • Takamizawa, J.1    Konishi, H.2    Yanagisawa, K.3
  • 25
    • 33947431322 scopus 로고    scopus 로고
    • Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation
    • Mayr C, Hemann MT and Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576-1579, 2007.
    • (2007) Science , vol.315 , pp. 1576-1579
    • Mayr, C.1    Hemann, M.T.2    Bartel, D.P.3
  • 26
    • 33644875228 scopus 로고    scopus 로고
    • Slowing down the Ras lane: MiRNAs as tumor suppressors?
    • Morris JP and McManus MT: Slowing down the Ras lane: MiRNAs as tumor suppressors? Sci STKE 16: 41, 2005.
    • (2005) Sci STKE , vol.16 , pp. 41
    • Morris, J.P.1    McManus, M.T.2
  • 27
    • 35548957247 scopus 로고    scopus 로고
    • MicroRNAs join the p53 network -another piece in the tumour-suppression puzzle
    • He L, He X, Lowe SW and Hannon GJ: MicroRNAs join the p53 network -another piece in the tumour-suppression puzzle. Nat Rev Cancer 7: 819-822, 2007.
    • (2007) Nat Rev Cancer , vol.7 , pp. 819-822
    • He, L.1    He, X.2    Lowe, S.W.3    Hannon, G.J.4
  • 28
    • 80052399265 scopus 로고    scopus 로고
    • MicroRNA-449 in cell fate determination
    • Lizé M, Klimke A and Dobbelstein M: MicroRNA-449 in cell fate determination. Cell Cycle 10: 2874-2882, 2011.
    • (2011) Cell Cycle , vol.10 , pp. 2874-2882
    • Lizé, M.1    Klimke, A.2    Dobbelstein, M.3
  • 29
    • 76749102887 scopus 로고    scopus 로고
    • E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis
    • Lizé M, Pilarski S and Dobbelstein M: E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 17: 452-458, 2010.
    • (2010) Cell Death Differ , vol.17 , pp. 452-458
    • Lizé, M.1    Pilarski, S.2    Dobbelstein, M.3
  • 30
    • 34247570492 scopus 로고    scopus 로고
    • Strong expression of a longevity-related protein, SIRT1, in Bowen's disease
    • Hida Y, Kubo Y, Murao K and Arase S: Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res 299: 103-106, 2007.
    • (2007) Arch Dermatol Res , vol.299 , pp. 103-106
    • Hida, Y.1    Kubo, Y.2    Murao, K.3    Arase, S.4
  • 31
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, et al: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369-2380, 2004.
    • (2004) EMBO J , vol.23 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3
  • 32
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • Walker AK, Yang F, Jiang K, et al: Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24: 1403-1417, 2010.
    • (2010) Genes Dev , vol.24 , pp. 1403-1417
    • Walker, A.K.1    Yang, F.2    Jiang, K.3
  • 33
    • 34547906123 scopus 로고    scopus 로고
    • Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
    • Rodgers JT and Puigserver P: Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861-12866, 2007.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12861-12866
    • Rodgers, J.T.1    Puigserver, P.2
  • 34
    • 77958595135 scopus 로고    scopus 로고
    • SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
    • Ponugoti B, Kim DH, Xiao Z, et al: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285: 33959-33970, 2010.
    • (2010) J Biol Chem , vol.285 , pp. 33959-33970
    • Ponugoti, B.1    Kim, D.H.2    Xiao, Z.3
  • 35
    • 85164069992 scopus 로고    scopus 로고
    • Evolving concepts in cancer therapy through targeting sphingolipid metabolism
    • Dec 30, Epub ahead of print
    • Truman JP, García-Barros M, Obeid LM and Hannun YA: Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta: Dec 30, 2013 (Epub ahead of print).
    • (2013) Biochim Biophys Acta
    • Truman, J.P.1    García-Barros, M.2    Obeid, L.M.3    Hannun, Y.A.4
  • 36
    • 84866362817 scopus 로고    scopus 로고
    • Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity
    • Zhou B, Li C, Qi W, et al: Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55: 2032-2043, 2012.
    • (2012) Diabetologia , vol.55 , pp. 2032-2043
    • Zhou, B.1    Li, C.2    Qi, W.3
  • 37
    • 28544444366 scopus 로고    scopus 로고
    • Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival
    • Ford J, Jiang M and Milner J: Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65: 10457-10463, 2005.
    • (2005) Cancer Res , vol.65 , pp. 10457-10463
    • Ford, J.1    Jiang, M.2    Milner, J.3
  • 38
    • 4143074854 scopus 로고    scopus 로고
    • SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells
    • Hamamoto R, Furukawa Y, Morita M, et al: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731-740, 2004.
    • (2004) Nat Cell Biol , vol.6 , pp. 731-740
    • Hamamoto, R.1    Furukawa, Y.2    Morita, M.3
  • 39
    • 84861563201 scopus 로고    scopus 로고
    • SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling
    • Wang H, Liu H, Chen K, et al: SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling. Oncol Rep 28: 311-318, 2012.
    • (2012) Oncol Rep , vol.28 , pp. 311-318
    • Wang, H.1    Liu, H.2    Chen, K.3
  • 40
    • 10044271037 scopus 로고    scopus 로고
    • SREBP transcription factors: Master regulators of lipid homeostasis
    • Eberle D, Hegarty B, Bossard P, Ferre P and Foufelle F: SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86: 839-848, 2004.
    • (2004) Biochimie , vol.86 , pp. 839-848
    • Eberle, D.1    Hegarty, B.2    Bossard, P.3    Ferre, P.4    Foufelle, F.5
  • 41
    • 33751117989 scopus 로고    scopus 로고
    • Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs
    • Dif N, Euthine V, Gonnet E, et al: Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J 400: 179-188, 2006.
    • (2006) Biochem J , vol.400 , pp. 179-188
    • Dif, N.1    Euthine, V.2    Gonnet, E.3
  • 42
    • 0036259860 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-1c expression and action in rat muscles: Insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression
    • Guillet-Deniau I, Mieulet V, Le Lay S, et al: Sterol regulatory element binding protein-1c expression and action in rat muscles: Insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes 51: 1722-1728, 2002.
    • (2002) Diabetes , vol.51 , pp. 1722-1728
    • Guillet-Deniau, I.1    Mieulet, V.2    Le Lay, S.3
  • 43
    • 57049172674 scopus 로고    scopus 로고
    • Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle
    • Rome S, Lecomte V, Meugnier E, et al: Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34: 327-337, 2008.
    • (2008) Physiol Genomics , vol.34 , pp. 327-337
    • Rome, S.1    Lecomte, V.2    Meugnier, E.3
  • 44
    • 0037378516 scopus 로고    scopus 로고
    • Coactivator dependent acetylation stabilizes members of the SREBP family of transcription factors
    • Giandomenico V, Simonsson M, Gronroos E and Ericsson J: Coactivator dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23: 2587-2599, 2003.
    • (2003) Mol Cell Biol , vol.23 , pp. 2587-2599
    • Giandomenico, V.1    Simonsson, M.2    Gronroos, E.3    Ericsson, J.4
  • 45
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin AC and Tontonoz P: Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13: 213-224, 2012.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 46
    • 0035047709 scopus 로고    scopus 로고
    • Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter
    • Yoshikawa T, Shimano H, Amemiya-Kudo M, et al: Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol Cell Biol 21: 2991-3000, 2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 2991-3000
    • Yoshikawa, T.1    Shimano, H.2    Amemiya-Kudo, M.3
  • 47
    • 0034669025 scopus 로고    scopus 로고
    • Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta
    • Repa JJ, Liang G, Ou J, et al: Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14: 2819-2830, 2000.
    • (2000) Genes Dev , vol.14 , pp. 2819-2830
    • Repa, J.J.1    Liang, G.2    Ou, J.3
  • 48
    • 33646428390 scopus 로고    scopus 로고
    • Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells
    • Cozzone D, Debard C, Dif N, et al: Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia 49: 990-999, 2006.
    • (2006) Diabetologia , vol.49 , pp. 990-999
    • Cozzone, D.1    Debard, C.2    Dif, N.3
  • 50
    • 56949099962 scopus 로고    scopus 로고
    • Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma
    • Yamashita T, Honda M, Takatori H, et al: Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 50: 100-110, 2009.
    • (2009) J Hepatol , vol.50 , pp. 100-110
    • Yamashita, T.1    Honda, M.2    Takatori, H.3
  • 51
    • 47849097390 scopus 로고    scopus 로고
    • Cholesterol and cholesterol-rich membranes in prostate cancer: An update
    • Di Vizio D, Solomon KR and Freeman MR: Cholesterol and cholesterol-rich membranes in prostate cancer: An update. Tumori 94: 633-639, 2008.
    • (2008) Tumori , vol.94 , pp. 633-639
    • Di Vizio, D.1    Solomon, K.R.2    Freeman, M.R.3
  • 53
    • 23044504053 scopus 로고    scopus 로고
    • Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer
    • Freeman MR, Cinar B and Lu ML: Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol Metab 16: 273-279, 2005.
    • (2005) Trends Endocrinol Metab , vol.16 , pp. 273-279
    • Freeman, M.R.1    Cinar, B.2    Lu, M.L.3
  • 55
    • 33745338485 scopus 로고    scopus 로고
    • MicroRNAs: A new class of regulatory genes affecting metabolism
    • Krutzfeldt J and Stoffel M: MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Metab 4: 9-12, 2006.
    • (2006) Cell Metab , vol.4 , pp. 9-12
    • Krutzfeldt, J.1    Stoffel, M.2
  • 57
    • 77957361864 scopus 로고    scopus 로고
    • Targeting microRNAs in cancer: Rationale, strategies and challenges
    • Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov 9: 775-789, 2010.
    • (2010) Nat Rev Drug Discov , vol.9 , pp. 775-789
    • Garzon, R.1    Marcucci, G.2    Croce, C.M.3
  • 58
    • 77956901498 scopus 로고    scopus 로고
    • The promise of microRNA replacement therapy
    • Bader AG, Brown D and Winkler M: The promise of microRNA replacement therapy. Cancer Res 70: 7027-7030, 2010.
    • (2010) Cancer Res , vol.70 , pp. 7027-7030
    • Bader, A.G.1    Brown, D.2    Winkler, M.3
  • 59
    • 79952109655 scopus 로고    scopus 로고
    • Controlling SIRT1 expression by microRNAs in health and metabolic disease
    • Lee J and Kemper JK: Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany, NY) 2: 527-534, 2010.
    • (2010) Aging (Albany, NY) , vol.2 , pp. 527-534
    • Lee, J.1    Kemper, J.K.2
  • 60
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S, et al: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 3: E2020, 2008.
    • (2008) PLoS One , vol.3 , pp. e2020
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 61
    • 84901193349 scopus 로고    scopus 로고
    • MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma
    • Bae HJ, Noh JH, Kim JK, et al: MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene 33: 2557-2567, 2014.
    • (2014) Oncogene , vol.33 , pp. 2557-2567
    • Bae, H.J.1    Noh, J.H.2    Kim, J.K.3
  • 62
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
    • Wang RH, Sengupta K, Li C, et al: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14: 312-323, 2008.
    • (2008) Cancer Cell , vol.14 , pp. 312-323
    • Wang, R.H.1    Sengupta, K.2    Li, C.3
  • 63
    • 34547100073 scopus 로고    scopus 로고
    • SIRT1 is significantly elevated in mouse and human prostate cancer
    • Huffman DM, Grizzle WE, Bamman MM, et al: SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612-6618, 2007.
    • (2007) Cancer Res , vol.67 , pp. 6612-6618
    • Huffman, D.M.1    Grizzle, W.E.2    Bamman, M.M.3
  • 64
    • 68849097673 scopus 로고    scopus 로고
    • Expression and prognostic significance of SIRT1 in ovarian epithelial tumours
    • Jang KY, Kim KS, Hwang SH, et al: Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology 41: 366-371, 2009.
    • (2009) Pathology , vol.41 , pp. 366-371
    • Jang, K.Y.1    Kim, K.S.2    Hwang, S.H.3
  • 65
    • 67650348173 scopus 로고    scopus 로고
    • Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma
    • Cha EJ, Noh SJ, Kwon KS, et al: Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res 15: 4453-4459, 2009.
    • (2009) Clin Cancer Res , vol.15 , pp. 4453-4459
    • Cha, E.J.1    Noh, S.J.2    Kwon, K.S.3
  • 66
    • 36549044009 scopus 로고    scopus 로고
    • Function of the SIRT1 protein deacetylase in cancer
    • Stunkel W, Peh BK, Tan YC, et al: Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2: 1360-1368, 2007.
    • (2007) Biotechnol J , vol.2 , pp. 1360-1368
    • Stunkel, W.1    Peh, B.K.2    Tan, Y.C.3
  • 67
    • 79958787784 scopus 로고    scopus 로고
    • Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth
    • Chen J, Zhang B, Wong N, et al: Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 71: 4138-4149, 2011.
    • (2011) Cancer Res , vol.71 , pp. 4138-4149
    • Chen, J.1    Zhang, B.2    Wong, N.3
  • 68
    • 81755176121 scopus 로고    scopus 로고
    • Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins
    • Noh JH, Jung KH, Kim JK, et al: Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins. PLoS One 6: E28103, 2011.
    • (2011) PLoS One , vol.6 , pp. e28103
    • Noh, J.H.1    Jung, K.H.2    Kim, J.K.3
  • 69
    • 84859311379 scopus 로고    scopus 로고
    • HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer
    • Xie HJ, Noh JH, Kim JK, et al: HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS One 7: E34265, 2012.
    • (2012) PLoS One , vol.7 , pp. e34265
    • Xie, H.J.1    Noh, J.H.2    Kim, J.K.3
  • 70
    • 84865479772 scopus 로고    scopus 로고
    • Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells
    • Buurman R, Gürlevik E, Schäffer V, et al: Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 143: 811-820, 2012.
    • (2012) Gastroenterology , vol.143 , pp. 811-820
    • Buurman, R.1    Gürlevik, E.2    Schäffer, V.3
  • 71
    • 84862908756 scopus 로고    scopus 로고
    • Activation of androgen receptor, lipogenesis and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells
    • Huang WC, Li X, Liu J, Lin JT and Chung LW: Activation of androgen receptor, lipogenesis and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 10: 133-142, 2012.
    • (2012) Mol Cancer Res , vol.10 , pp. 133-142
    • Huang, W.C.1    Li, X.2    Liu, J.3    Lin, J.T.4    Chung, L.W.5
  • 72
    • 21644481768 scopus 로고    scopus 로고
    • In support of fatty acid synthase (FAS) as a metabolic oncogene: Extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells
    • Menendez JA, Decker JP and Lupu R: In support of fatty acid synthase (FAS) as a metabolic oncogene: Extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. J Cell Biochem 94: 1-4, 2005.
    • (2005) J Cell Biochem , vol.94 , pp. 1-4
    • Menendez, J.A.1    Decker, J.P.2    Lupu, R.3
  • 73
    • 2542445809 scopus 로고    scopus 로고
    • Fatty acid synthase: A metabolic oncogene in prostate cancer?
    • Baron A, Migita T, Tang D and Loda M: Fatty acid synthase: A metabolic oncogene in prostate cancer? J Cell Biochem 91: 47-53, 2004.
    • (2004) J Cell Biochem , vol.91 , pp. 47-53
    • Baron, A.1    Migita, T.2    Tang, D.3    Loda, M.4
  • 74
    • 84890391023 scopus 로고    scopus 로고
    • Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with hepatoma malignant progression
    • Li Y, Xu J, Chen H, et al: Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with hepatoma malignant progression. Nucleic Acids Res 41: E203, 2013.
    • (2013) Nucleic Acids Res , vol.41 , pp. e203
    • Li, Y.1    Xu, J.2    Chen, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.