-
2
-
-
79960834477
-
Computer-aided detection of lung nodules based on decision fusion techniques
-
Antonelli M., Cococcioni M., Lazzerini B., Marcelloni F. Computer-aided detection of lung nodules based on decision fusion techniques. Pattern Anal. Appl. 2011, 14(3):295-310.
-
(2011)
Pattern Anal. Appl.
, vol.14
, Issue.3
, pp. 295-310
-
-
Antonelli, M.1
Cococcioni, M.2
Lazzerini, B.3
Marcelloni, F.4
-
3
-
-
84884210619
-
Application of neural networks in detection of abnormal brain perfusion regions
-
Hachaj T., Ogiela M.R. Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing 2013, 122:33-42.
-
(2013)
Neurocomputing
, vol.122
, pp. 33-42
-
-
Hachaj, T.1
Ogiela, M.R.2
-
4
-
-
84857588940
-
An intelligent system for detecting faults in photovoltaic fields
-
11th International Conference on Intelligent Systems Design and Applications (ISDA)
-
P. Ducange, M. Fazzolari, B. Lazzerini, F. Marcelloni, An intelligent system for detecting faults in photovoltaic fields, in: 11th International Conference on Intelligent Systems Design and Applications (ISDA), 2011, pp. 1341-1346.
-
(2011)
, pp. 1341-1346
-
-
Ducange, P.1
Fazzolari, M.2
Lazzerini, B.3
Marcelloni, F.4
-
5
-
-
68549133155
-
Learning from imbalanced data
-
He H., García E. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21(9):1263-1284.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
García, E.2
-
6
-
-
84893740371
-
Data mining for imbalanced datasets: an overview
-
Data Mining and Knowledge Discovery Handbook, Springer US
-
N. Chawla, Data mining for imbalanced datasets: an overview, in: Data Mining and Knowledge Discovery Handbook, Springer US, 2010, pp. 875-886.
-
(2010)
, pp. 875-886
-
-
Chawla, N.1
-
7
-
-
84862515469
-
A review on ensembles for the class imbalance problem. bagging-, boosting-, and hybrid-based approaches
-
Galar M., Fernandez A., Barrenechea E., Bustince H., Herrera F. A review on ensembles for the class imbalance problem. bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2012, 42(4):463-484.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
8
-
-
84878394942
-
Evolving diverse ensembles using genetic programming for classification with unbalanced data
-
Bhowan U., Johnston M., Zhang M., Yao X. Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 2013, 17(3):368-386.
-
(2013)
IEEE Trans. Evol. Comput.
, vol.17
, Issue.3
, pp. 368-386
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
Yao, X.4
-
9
-
-
84883447718
-
An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics
-
Lopez V., Fernández A., García S., Palade V., Herrera F. An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250:113-141.
-
(2013)
Inf. Sci.
, vol.250
, pp. 113-141
-
-
Lopez, V.1
Fernández, A.2
García, S.3
Palade, V.4
Herrera, F.5
-
11
-
-
84871621085
-
A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
-
Lopez V., Fernandez A., del Jesus M.J., Herrera F. A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl. Based Syst. 2013, 38:85-104.
-
(2013)
Knowl. Based Syst.
, vol.38
, pp. 85-104
-
-
Lopez, V.1
Fernandez, A.2
del Jesus, M.J.3
Herrera, F.4
-
12
-
-
84887616457
-
Addressing imbalanced classification with instance generation techniques. IPADE-ID
-
López V., Triguero I., Carmona C.J., García S., Herrera F. Addressing imbalanced classification with instance generation techniques. IPADE-ID. Neurocomputing 2014, 126:15-28.
-
(2014)
Neurocomputing
, vol.126
, pp. 15-28
-
-
López, V.1
Triguero, I.2
Carmona, C.J.3
García, S.4
Herrera, F.5
-
13
-
-
84881072864
-
EUSBoost. enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
Galar M., Fernández A., Barrenechea E., Herrera F. EUSBoost. enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 2013, 46(12):3460-3471.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.12
, pp. 3460-3471
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Herrera, F.4
-
14
-
-
0346586663
-
SMOTE. synthetic minority over-sampling technique
-
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE. synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16:321-357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
15
-
-
46849096083
-
A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
-
Fernández A., García S., del Jesús M.J., Herrera F. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 2008, 159(18):2378-2398.
-
(2008)
Fuzzy Sets Syst.
, vol.159
, Issue.18
, pp. 2378-2398
-
-
Fernández, A.1
García, S.2
del Jesús, M.J.3
Herrera, F.4
-
16
-
-
20844441675
-
KBA. kernel boundary alignment considering imbalanced data distribution
-
Wu G., Chang E. KBA. kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 2005, 17(6):786-795.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.6
, pp. 786-795
-
-
Wu, G.1
Chang, E.2
-
17
-
-
77952875468
-
Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
-
Ducange P., Lazzerini B., Marcelloni F. Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Comput. 2010, 14(7):713-728.
-
(2010)
Soft Comput.
, vol.14
, Issue.7
, pp. 713-728
-
-
Ducange, P.1
Lazzerini, B.2
Marcelloni, F.3
-
18
-
-
84858834586
-
Identification of different types of minority class examples in imbalanced data
-
Hybrid Artificial Intelligent Systems, Springer
-
K. Napierala, J. Stefanowski, Identification of different types of minority class examples in imbalanced data, in: Hybrid Artificial Intelligent Systems, Springer, 2012, pp. 139-150.
-
(2012)
, pp. 139-150
-
-
Napierala, K.1
Stefanowski, J.2
-
19
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
Chawla N.V., Cieslak D.A., Hall L.O., Joshi A. Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Discov. 2008, 17(2):225-252.
-
(2008)
Data Min. Knowl. Discov.
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
20
-
-
84868626655
-
Weighted extreme learning machine for imbalance learning
-
Zong W., Huang G.-B., Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101(0):229-242.
-
(2013)
Neurocomputing
, vol.101
, Issue.0
, pp. 229-242
-
-
Zong, W.1
Huang, G.-B.2
Chen, Y.3
-
21
-
-
84889092504
-
Cost-sensitive decision tree ensembles for effective imbalanced classification
-
PART C (0)
-
Krawczyk B., Woźniak M., Schaefer G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 2014, 14(Part C (0)):554-562.
-
(2014)
Appl. Soft Comput.
, vol.14
, pp. 554-562
-
-
Krawczyk, B.1
Woźniak, M.2
Schaefer, G.3
-
22
-
-
70350719232
-
Meta-learning for imbalanced data and classification ensemble in binary classification
-
Lin S.-C., Chang Y.chinI., Yang W.-N. Meta-learning for imbalanced data and classification ensemble in binary classification. Neurocomputing 2009, 73(1-3):484-494.
-
(2009)
Neurocomputing
, vol.73
, Issue.1-3
, pp. 484-494
-
-
Lin, S.-C.1
Chang, Y.2
Yang, W.-N.3
-
23
-
-
84868684788
-
Iivotes ensemble for imbalanced data
-
Blaszczynski J., Deckert M., Stefanowski J., Wilk S. Iivotes ensemble for imbalanced data. Intell. Data Anal. 2012, 16(5):777-801.
-
(2012)
Intell. Data Anal.
, vol.16
, Issue.5
, pp. 777-801
-
-
Blaszczynski, J.1
Deckert, M.2
Stefanowski, J.3
Wilk, S.4
-
24
-
-
84887613816
-
Diversity measures for one-class classifier ensembles
-
Krawczyk B., Woźniak M. Diversity measures for one-class classifier ensembles. Neurocomputing 2014, 126(0):36-44.
-
(2014)
Neurocomputing
, vol.126
, Issue.0
, pp. 36-44
-
-
Krawczyk, B.1
Woźniak, M.2
-
25
-
-
60849127572
-
Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets
-
Fernández A., del Jesús M.J., Herrera F. Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approx. Reason. 2009, 50(3):561-577.
-
(2009)
Int. J. Approx. Reason.
, vol.50
, Issue.3
, pp. 561-577
-
-
Fernández, A.1
del Jesús, M.J.2
Herrera, F.3
-
26
-
-
64049115860
-
On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets
-
Fernández A., del Jesus M.J., Herrera F. On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Syst. Appl. 2009, 36(6):9805-9812.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.6
, pp. 9805-9812
-
-
Fernández, A.1
del Jesus, M.J.2
Herrera, F.3
-
27
-
-
50149096917
-
Genetic fuzzy systems. taxonomy, current research trends and prospects
-
Herrera F. Genetic fuzzy systems. taxonomy, current research trends and prospects. Evol. Intell. 2008, 1(1):27-46.
-
(2008)
Evol. Intell.
, vol.1
, Issue.1
, pp. 27-46
-
-
Herrera, F.1
-
28
-
-
75149159107
-
On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
-
Fernández A., del Jesús M.J., Herrera F. On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Inf. Sci. 2010, 180(8):1268-1291.
-
(2010)
Inf. Sci.
, vol.180
, Issue.8
, pp. 1268-1291
-
-
Fernández, A.1
del Jesús, M.J.2
Herrera, F.3
-
29
-
-
84862112830
-
Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets
-
Villar P., Fernandez A., Carrasco R.A., Herrera F. Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2012, 20(03):369-397.
-
(2012)
Int. J. Uncertain. Fuzziness Knowl. Based Syst.
, vol.20
, Issue.3
, pp. 369-397
-
-
Villar, P.1
Fernandez, A.2
Carrasco, R.A.3
Herrera, F.4
-
30
-
-
70349591070
-
FURIA. an algorithm for unordered fuzzy rule induction
-
Huhn J., Hullermeier E. FURIA. an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 2009, 19(3):293-319.
-
(2009)
Data Min. Knowl. Discov.
, vol.19
, Issue.3
, pp. 293-319
-
-
Huhn, J.1
Hullermeier, E.2
-
31
-
-
80053653987
-
A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
-
Alcala-Fdez J., Alcala R., Herrera F. A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 2011, 19(5):857-872.
-
(2011)
IEEE Trans. Fuzzy Syst.
, vol.19
, Issue.5
, pp. 857-872
-
-
Alcala-Fdez, J.1
Alcala, R.2
Herrera, F.3
-
32
-
-
0032655554
-
A proposal on reasoning methods in fuzzy rule-based classification systems
-
Cordon O., del Jesus M.J., Herrera F. A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason. 1999, 20(1):21-45.
-
(1999)
Int. J. Approx. Reason.
, vol.20
, Issue.1
, pp. 21-45
-
-
Cordon, O.1
del Jesus, M.J.2
Herrera, F.3
-
33
-
-
23944451642
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
Ishibuchi H., Nakashima T., Nii M. Classification and Modeling with Linguistic Information Granules: (Advanced Approaches to Linguistic Data Mining Advanced Information Processing) 2004, Springer-Verlag New York, Inc., Secaucus, NJ, USA.
-
(2004)
Classification and Modeling with Linguistic Information Granules: (Advanced Approaches to Linguistic Data Mining Advanced Information Processing)
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
34
-
-
0032069167
-
Completeness and consistency conditions for learning fuzzy rules
-
Gonzalez A., Perez R. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets Syst. 1998, 96:37-51.
-
(1998)
Fuzzy Sets Syst.
, vol.96
, pp. 37-51
-
-
Gonzalez, A.1
Perez, R.2
-
35
-
-
79960555001
-
Interpretability of linguistic fuzzy rule-based systems. an overview of interpretability measures
-
Gacto M., Alcala R., Herrera F. Interpretability of linguistic fuzzy rule-based systems. an overview of interpretability measures. Inf. Sci. 2011, 181(20):4340-4360.
-
(2011)
Inf. Sci.
, vol.181
, Issue.20
, pp. 4340-4360
-
-
Gacto, M.1
Alcala, R.2
Herrera, F.3
-
36
-
-
80052724027
-
Multi-objective evolutionary fuzzy systems
-
Proceedings of the 9th International Conference on Fuzzy Logic and Applications, WILF'11, Springer-Verlag, Berlin, Heidelberg
-
P. Ducange, F. Marcelloni, Multi-objective evolutionary fuzzy systems, in: Proceedings of the 9th International Conference on Fuzzy Logic and Applications, WILF'11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 83-90.
-
(2011)
, pp. 83-90
-
-
Ducange, P.1
Marcelloni, F.2
-
37
-
-
84864813509
-
A review of the application of multiobjective evolutionary fuzzy systems. current status and further directions
-
Fazzolari M., Alcalá R., Nojima Y., Ishibuchi H., Herrera F. A review of the application of multiobjective evolutionary fuzzy systems. current status and further directions. IEEE Trans. Fuzzy Syst. 2013, 21(1):45-65.
-
(2013)
IEEE Trans. Fuzzy Syst.
, vol.21
, Issue.1
, pp. 45-65
-
-
Fazzolari, M.1
Alcalá, R.2
Nojima, Y.3
Ishibuchi, H.4
Herrera, F.5
-
38
-
-
0004084763
-
-
World Scientific, Singapore
-
Chi Z., Yan H., Phm T. Fuzzy Algorithms: with Applications to Image Processing and Pattern Recognition, Advances in Fuzzy Systems 1996, World Scientific, Singapore.
-
(1996)
Fuzzy Algorithms: with Applications to Image Processing and Pattern Recognition, Advances in Fuzzy Systems
-
-
Chi, Z.1
Yan, H.2
Phm, T.3
-
39
-
-
0003588227
-
-
Lawrence Erlbaum Associates, Inc, Mahwah, New Jersey, United States
-
Swets J.A. Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers 1996, Lawrence Erlbaum Associates, Inc, Mahwah, New Jersey, United States.
-
(1996)
Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers
-
-
Swets, J.A.1
-
40
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27(8):861-874.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
41
-
-
70349280929
-
An experimental comparison of performance measures for classification
-
Ferri C., Hernndez-Orallo J., Modroiu R. An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 2009, 30(1):27-38.
-
(2009)
Pattern Recognit. Lett.
, vol.30
, Issue.1
, pp. 27-38
-
-
Ferri, C.1
Hernndez-Orallo, J.2
Modroiu, R.3
-
42
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
Huang J., Ling C. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17(3):299-310.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.3
, pp. 299-310
-
-
Huang, J.1
Ling, C.2
-
43
-
-
80053085826
-
Studying the behavior of a multiobjective genetic algorithm to design fuzzy rule-based classification systems for imbalanced data-sets
-
2011 IEEE International Conference on Fuzzy Systems
-
P. Villar, A. Fernández, F. Herrera, Studying the behavior of a multiobjective genetic algorithm to design fuzzy rule-based classification systems for imbalanced data-sets, in: 2011 IEEE International Conference on Fuzzy Systems, 2011, pp. 1239-1246.
-
(2011)
, pp. 1239-1246
-
-
Villar, P.1
Fernández, A.2
Herrera, F.3
-
44
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm. NSGA-II
-
Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans. Evol. Comput. 2002, 6(2):182-197.
-
(2002)
IEEE Trans. Evol. Comput.
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
45
-
-
0036475811
-
Linguistic modeling by hierarchical systems of linguistic rules
-
Cordon O., Herrera F., Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Syst. 2002, 10(1):2-20.
-
(2002)
IEEE Trans. Fuzzy Syst.
, vol.10
, Issue.1
, pp. 2-20
-
-
Cordon, O.1
Herrera, F.2
Zwir, I.3
-
46
-
-
75149139352
-
GP-COACH. genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems
-
Berlanga F.J., Rivera A.J., del Jesus M.J., Herrera F. GP-COACH. genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems. Inf. Sci. 2010, 180(8):1183-1200.
-
(2010)
Inf. Sci.
, vol.180
, Issue.8
, pp. 1183-1200
-
-
Berlanga, F.J.1
Rivera, A.J.2
del Jesus, M.J.3
Herrera, F.4
-
47
-
-
34548206770
-
A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection
-
Alcalá R., Alcalá-Fdez J., Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 2007, 15(4):616-635.
-
(2007)
IEEE Trans. Fuzzy Syst.
, vol.15
, Issue.4
, pp. 616-635
-
-
Alcalá, R.1
Alcalá-Fdez, J.2
Herrera, F.3
-
49
-
-
80052670129
-
Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index
-
Antonelli M., Ducange P., Lazzerini B., Marcelloni F. Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index. Soft Comput. 2011, 15(10):1981-1998.
-
(2011)
Soft Comput.
, vol.15
, Issue.10
, pp. 1981-1998
-
-
Antonelli, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
50
-
-
81155126099
-
Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy complexity and partition integrity
-
Antonelli M., Ducange P., Lazzerini B., Marcelloni F. Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy complexity and partition integrity. Soft Comput. 2011, 15(12):2335-2354.
-
(2011)
Soft Comput.
, vol.15
, Issue.12
, pp. 2335-2354
-
-
Antonelli, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
51
-
-
84859731717
-
Genetic training instance selection in multi-objective evolutionary fuzzy systems. a co-evolutionary approach
-
Antonelli M., Ducange P., Marcelloni F. Genetic training instance selection in multi-objective evolutionary fuzzy systems. a co-evolutionary approach. IEEE Trans. Fuzzy Syst. 2012, 20(2):276-290.
-
(2012)
IEEE Trans. Fuzzy Syst.
, vol.20
, Issue.2
, pp. 276-290
-
-
Antonelli, M.1
Ducange, P.2
Marcelloni, F.3
-
52
-
-
0034199912
-
Approximating the nondominated front using the Pareto archived evolution strategy
-
Knowles J.D., Corne D.W. Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 2000, 8(2):149-172.
-
(2000)
Evol. Comput.
, vol.8
, Issue.2
, pp. 149-172
-
-
Knowles, J.D.1
Corne, D.W.2
-
53
-
-
84888059105
-
Multiobjective genetic programming for maximizing {ROC} performance
-
Wang P., Tang K., Weise T., Tsang E., Yao X. Multiobjective genetic programming for maximizing {ROC} performance. Neurocomputing 2014, 125(0):102-118.
-
(2014)
Neurocomputing
, vol.125
, Issue.0
, pp. 102-118
-
-
Wang, P.1
Tang, K.2
Weise, T.3
Tsang, E.4
Yao, X.5
-
54
-
-
79960535211
-
A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
-
Derrac J., García S., Molina D., Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1(1):3-18.
-
(2011)
Swarm Evol. Comput.
, vol.1
, Issue.1
, pp. 3-18
-
-
Derrac, J.1
García, S.2
Molina, D.3
Herrera, F.4
-
55
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32(200):675-701.
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, Issue.200
, pp. 675-701
-
-
Friedman, M.1
-
56
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
Iman R.L., Davenport J.H. Approximations of the critical region of the Friedman statistic. Commun. Stat.-Theory Methods Part A 1980, 9:571-595.
-
(1980)
Commun. Stat.-Theory Methods Part A
, vol.9
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.H.2
-
57
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6:65-70.
-
(1979)
Scand. J. Stat.
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
58
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1(6):80-83.
-
(1945)
Biom. Bull.
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
60
-
-
79951829331
-
Keel data-mining software tool. data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez J., Fernández A., Luengo J., Derrac J., García S., Sánchez L., Herrera F. Keel data-mining software tool. data set repository, integration of algorithms and experimental analysis framework. Mult. Valued Logic Soft Comput. 2011, 17(2-3):255-287.
-
(2011)
Mult. Valued Logic Soft Comput.
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcalá-Fdez, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
61
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista G.E.A.P.A., Prati R.C., Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 2004, 6(1):20-29.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
62
-
-
80052414830
-
Evolutionary-based selection of generalized instances for imbalanced classification
-
García S., Derrac J., Triguero I., Carmona C.J., Herrera F. Evolutionary-based selection of generalized instances for imbalanced classification. Knowl. Based Syst. 2012, 25(1):3-12.
-
(2012)
Knowl. Based Syst.
, vol.25
, Issue.1
, pp. 3-12
-
-
García, S.1
Derrac, J.2
Triguero, I.3
Carmona, C.J.4
Herrera, F.5
-
63
-
-
56349163288
-
Combination approach of smote and biased-SVM for imbalanced datasets
-
IEEE International Joint Conference on Neural Networks, IJCNN
-
H.-Y. Wang, Combination approach of smote and biased-SVM for imbalanced datasets, in: IEEE International Joint Conference on Neural Networks, IJCNN, 2008, pp. 228-231.
-
(2008)
, pp. 228-231
-
-
Wang, H.-Y.1
-
64
-
-
79957915328
-
Addressing data complexity for imbalanced data sets. analysis of SMOTE-based oversampling and evolutionary undersampling
-
Luengo J., Fernández A., García S., Herrera F. Addressing data complexity for imbalanced data sets. analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput. 2011, 15(10):1909-1936.
-
(2011)
Soft Comput.
, vol.15
, Issue.10
, pp. 1909-1936
-
-
Luengo, J.1
Fernández, A.2
García, S.3
Herrera, F.4
-
65
-
-
84887866644
-
Kernel-based feature selection techniques for transport proteins based on star graph topological indices
-
Fernandez-Lozano C., Gestal M., Pedreira-Souto N., Postelnicu L., Dorado J., Robert Munteanu C. Kernel-based feature selection techniques for transport proteins based on star graph topological indices. Curr. Top. Med. Chem. 2013, 13(14):1681-1691.
-
(2013)
Curr. Top. Med. Chem.
, vol.13
, Issue.14
, pp. 1681-1691
-
-
Fernandez-Lozano, C.1
Gestal, M.2
Pedreira-Souto, N.3
Postelnicu, L.4
Dorado, J.5
Robert Munteanu, C.6
-
66
-
-
85149612939
-
Fast effective rule induction
-
Proceedings of the Twelfth International Conference on Machine Learning, Morgan Kaufmann
-
W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Morgan Kaufmann, 1995, pp. 115-123.
-
(1995)
, pp. 115-123
-
-
Cohen, W.W.1
-
67
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55(1):119-139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
68
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
69
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y., Kamel M.S., Wong A.K., Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40(12):3358-3378.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.3
Wang, Y.4
-
70
-
-
72949118881
-
RUSBoost. a hybrid approach to alleviating class imbalance
-
Seiffert C., Khoshgoftaar T.M., Van Hulse J., Napolitano A. RUSBoost. a hybrid approach to alleviating class imbalance. Man Cybern. Part A: Syst. Hum. 2010, 40(1):185-197.
-
(2010)
Man Cybern. Part A: Syst. Hum.
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
Napolitano, A.4
-
71
-
-
67650505046
-
Diversity analysis on imbalanced data sets by using ensemble models
-
IEEE Symposium on Computational Intelligence and Data Mining, IEEE
-
S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: IEEE Symposium on Computational Intelligence and Data Mining, IEEE, 2009, pp. 324-331.
-
(2009)
, pp. 324-331
-
-
Wang, S.1
Yao, X.2
|