메뉴 건너뛰기




Volumn 146, Issue , 2014, Pages 125-136

An experimental study on evolutionary fuzzy classifiers designed for managing imbalanced datasets

Author keywords

Fuzzy rule based classifiers; Genetic and evolutionary fuzzy systems; Imbalanced datasets

Indexed keywords

EVOLUTIONARY ALGORITHMS; FUZZY INFERENCE; FUZZY RULES; MEMBERSHIP FUNCTIONS; FUZZY SETS; FUZZY SYSTEMS;

EID: 84906951435     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.04.070     Document Type: Article
Times cited : (24)

References (72)
  • 2
    • 79960834477 scopus 로고    scopus 로고
    • Computer-aided detection of lung nodules based on decision fusion techniques
    • Antonelli M., Cococcioni M., Lazzerini B., Marcelloni F. Computer-aided detection of lung nodules based on decision fusion techniques. Pattern Anal. Appl. 2011, 14(3):295-310.
    • (2011) Pattern Anal. Appl. , vol.14 , Issue.3 , pp. 295-310
    • Antonelli, M.1    Cococcioni, M.2    Lazzerini, B.3    Marcelloni, F.4
  • 3
    • 84884210619 scopus 로고    scopus 로고
    • Application of neural networks in detection of abnormal brain perfusion regions
    • Hachaj T., Ogiela M.R. Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing 2013, 122:33-42.
    • (2013) Neurocomputing , vol.122 , pp. 33-42
    • Hachaj, T.1    Ogiela, M.R.2
  • 4
    • 84857588940 scopus 로고    scopus 로고
    • An intelligent system for detecting faults in photovoltaic fields
    • 11th International Conference on Intelligent Systems Design and Applications (ISDA)
    • P. Ducange, M. Fazzolari, B. Lazzerini, F. Marcelloni, An intelligent system for detecting faults in photovoltaic fields, in: 11th International Conference on Intelligent Systems Design and Applications (ISDA), 2011, pp. 1341-1346.
    • (2011) , pp. 1341-1346
    • Ducange, P.1    Fazzolari, M.2    Lazzerini, B.3    Marcelloni, F.4
  • 5
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H., García E. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21(9):1263-1284.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    García, E.2
  • 6
    • 84893740371 scopus 로고    scopus 로고
    • Data mining for imbalanced datasets: an overview
    • Data Mining and Knowledge Discovery Handbook, Springer US
    • N. Chawla, Data mining for imbalanced datasets: an overview, in: Data Mining and Knowledge Discovery Handbook, Springer US, 2010, pp. 875-886.
    • (2010) , pp. 875-886
    • Chawla, N.1
  • 8
    • 84878394942 scopus 로고    scopus 로고
    • Evolving diverse ensembles using genetic programming for classification with unbalanced data
    • Bhowan U., Johnston M., Zhang M., Yao X. Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 2013, 17(3):368-386.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.3 , pp. 368-386
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3    Yao, X.4
  • 9
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics
    • Lopez V., Fernández A., García S., Palade V., Herrera F. An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250:113-141.
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • Lopez, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 11
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • Lopez V., Fernandez A., del Jesus M.J., Herrera F. A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl. Based Syst. 2013, 38:85-104.
    • (2013) Knowl. Based Syst. , vol.38 , pp. 85-104
    • Lopez, V.1    Fernandez, A.2    del Jesus, M.J.3    Herrera, F.4
  • 12
    • 84887616457 scopus 로고    scopus 로고
    • Addressing imbalanced classification with instance generation techniques. IPADE-ID
    • López V., Triguero I., Carmona C.J., García S., Herrera F. Addressing imbalanced classification with instance generation techniques. IPADE-ID. Neurocomputing 2014, 126:15-28.
    • (2014) Neurocomputing , vol.126 , pp. 15-28
    • López, V.1    Triguero, I.2    Carmona, C.J.3    García, S.4    Herrera, F.5
  • 13
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost. enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • Galar M., Fernández A., Barrenechea E., Herrera F. EUSBoost. enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 2013, 46(12):3460-3471.
    • (2013) Pattern Recognit. , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 15
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • Fernández A., García S., del Jesús M.J., Herrera F. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 2008, 159(18):2378-2398.
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.18 , pp. 2378-2398
    • Fernández, A.1    García, S.2    del Jesús, M.J.3    Herrera, F.4
  • 16
    • 20844441675 scopus 로고    scopus 로고
    • KBA. kernel boundary alignment considering imbalanced data distribution
    • Wu G., Chang E. KBA. kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 2005, 17(6):786-795.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.2
  • 17
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • Ducange P., Lazzerini B., Marcelloni F. Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Comput. 2010, 14(7):713-728.
    • (2010) Soft Comput. , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 18
    • 84858834586 scopus 로고    scopus 로고
    • Identification of different types of minority class examples in imbalanced data
    • Hybrid Artificial Intelligent Systems, Springer
    • K. Napierala, J. Stefanowski, Identification of different types of minority class examples in imbalanced data, in: Hybrid Artificial Intelligent Systems, Springer, 2012, pp. 139-150.
    • (2012) , pp. 139-150
    • Napierala, K.1    Stefanowski, J.2
  • 19
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • Chawla N.V., Cieslak D.A., Hall L.O., Joshi A. Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Discov. 2008, 17(2):225-252.
    • (2008) Data Min. Knowl. Discov. , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 20
    • 84868626655 scopus 로고    scopus 로고
    • Weighted extreme learning machine for imbalance learning
    • Zong W., Huang G.-B., Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101(0):229-242.
    • (2013) Neurocomputing , vol.101 , Issue.0 , pp. 229-242
    • Zong, W.1    Huang, G.-B.2    Chen, Y.3
  • 21
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • PART C (0)
    • Krawczyk B., Woźniak M., Schaefer G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 2014, 14(Part C (0)):554-562.
    • (2014) Appl. Soft Comput. , vol.14 , pp. 554-562
    • Krawczyk, B.1    Woźniak, M.2    Schaefer, G.3
  • 22
    • 70350719232 scopus 로고    scopus 로고
    • Meta-learning for imbalanced data and classification ensemble in binary classification
    • Lin S.-C., Chang Y.chinI., Yang W.-N. Meta-learning for imbalanced data and classification ensemble in binary classification. Neurocomputing 2009, 73(1-3):484-494.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 484-494
    • Lin, S.-C.1    Chang, Y.2    Yang, W.-N.3
  • 24
    • 84887613816 scopus 로고    scopus 로고
    • Diversity measures for one-class classifier ensembles
    • Krawczyk B., Woźniak M. Diversity measures for one-class classifier ensembles. Neurocomputing 2014, 126(0):36-44.
    • (2014) Neurocomputing , vol.126 , Issue.0 , pp. 36-44
    • Krawczyk, B.1    Woźniak, M.2
  • 25
    • 60849127572 scopus 로고    scopus 로고
    • Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets
    • Fernández A., del Jesús M.J., Herrera F. Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approx. Reason. 2009, 50(3):561-577.
    • (2009) Int. J. Approx. Reason. , vol.50 , Issue.3 , pp. 561-577
    • Fernández, A.1    del Jesús, M.J.2    Herrera, F.3
  • 26
    • 64049115860 scopus 로고    scopus 로고
    • On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets
    • Fernández A., del Jesus M.J., Herrera F. On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Syst. Appl. 2009, 36(6):9805-9812.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 , pp. 9805-9812
    • Fernández, A.1    del Jesus, M.J.2    Herrera, F.3
  • 27
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems. taxonomy, current research trends and prospects
    • Herrera F. Genetic fuzzy systems. taxonomy, current research trends and prospects. Evol. Intell. 2008, 1(1):27-46.
    • (2008) Evol. Intell. , vol.1 , Issue.1 , pp. 27-46
    • Herrera, F.1
  • 28
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • Fernández A., del Jesús M.J., Herrera F. On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Inf. Sci. 2010, 180(8):1268-1291.
    • (2010) Inf. Sci. , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    del Jesús, M.J.2    Herrera, F.3
  • 29
    • 84862112830 scopus 로고    scopus 로고
    • Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets
    • Villar P., Fernandez A., Carrasco R.A., Herrera F. Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2012, 20(03):369-397.
    • (2012) Int. J. Uncertain. Fuzziness Knowl. Based Syst. , vol.20 , Issue.3 , pp. 369-397
    • Villar, P.1    Fernandez, A.2    Carrasco, R.A.3    Herrera, F.4
  • 30
    • 70349591070 scopus 로고    scopus 로고
    • FURIA. an algorithm for unordered fuzzy rule induction
    • Huhn J., Hullermeier E. FURIA. an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 2009, 19(3):293-319.
    • (2009) Data Min. Knowl. Discov. , vol.19 , Issue.3 , pp. 293-319
    • Huhn, J.1    Hullermeier, E.2
  • 31
    • 80053653987 scopus 로고    scopus 로고
    • A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
    • Alcala-Fdez J., Alcala R., Herrera F. A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 2011, 19(5):857-872.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.5 , pp. 857-872
    • Alcala-Fdez, J.1    Alcala, R.2    Herrera, F.3
  • 32
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Cordon O., del Jesus M.J., Herrera F. A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason. 1999, 20(1):21-45.
    • (1999) Int. J. Approx. Reason. , vol.20 , Issue.1 , pp. 21-45
    • Cordon, O.1    del Jesus, M.J.2    Herrera, F.3
  • 34
    • 0032069167 scopus 로고    scopus 로고
    • Completeness and consistency conditions for learning fuzzy rules
    • Gonzalez A., Perez R. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets Syst. 1998, 96:37-51.
    • (1998) Fuzzy Sets Syst. , vol.96 , pp. 37-51
    • Gonzalez, A.1    Perez, R.2
  • 35
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule-based systems. an overview of interpretability measures
    • Gacto M., Alcala R., Herrera F. Interpretability of linguistic fuzzy rule-based systems. an overview of interpretability measures. Inf. Sci. 2011, 181(20):4340-4360.
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4340-4360
    • Gacto, M.1    Alcala, R.2    Herrera, F.3
  • 36
    • 80052724027 scopus 로고    scopus 로고
    • Multi-objective evolutionary fuzzy systems
    • Proceedings of the 9th International Conference on Fuzzy Logic and Applications, WILF'11, Springer-Verlag, Berlin, Heidelberg
    • P. Ducange, F. Marcelloni, Multi-objective evolutionary fuzzy systems, in: Proceedings of the 9th International Conference on Fuzzy Logic and Applications, WILF'11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 83-90.
    • (2011) , pp. 83-90
    • Ducange, P.1    Marcelloni, F.2
  • 37
    • 84864813509 scopus 로고    scopus 로고
    • A review of the application of multiobjective evolutionary fuzzy systems. current status and further directions
    • Fazzolari M., Alcalá R., Nojima Y., Ishibuchi H., Herrera F. A review of the application of multiobjective evolutionary fuzzy systems. current status and further directions. IEEE Trans. Fuzzy Syst. 2013, 21(1):45-65.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.1 , pp. 45-65
    • Fazzolari, M.1    Alcalá, R.2    Nojima, Y.3    Ishibuchi, H.4    Herrera, F.5
  • 40
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 41
    • 70349280929 scopus 로고    scopus 로고
    • An experimental comparison of performance measures for classification
    • Ferri C., Hernndez-Orallo J., Modroiu R. An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 2009, 30(1):27-38.
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.1 , pp. 27-38
    • Ferri, C.1    Hernndez-Orallo, J.2    Modroiu, R.3
  • 42
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • Huang J., Ling C. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17(3):299-310.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.2
  • 43
    • 80053085826 scopus 로고    scopus 로고
    • Studying the behavior of a multiobjective genetic algorithm to design fuzzy rule-based classification systems for imbalanced data-sets
    • 2011 IEEE International Conference on Fuzzy Systems
    • P. Villar, A. Fernández, F. Herrera, Studying the behavior of a multiobjective genetic algorithm to design fuzzy rule-based classification systems for imbalanced data-sets, in: 2011 IEEE International Conference on Fuzzy Systems, 2011, pp. 1239-1246.
    • (2011) , pp. 1239-1246
    • Villar, P.1    Fernández, A.2    Herrera, F.3
  • 44
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm. NSGA-II
    • Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans. Evol. Comput. 2002, 6(2):182-197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 45
    • 0036475811 scopus 로고    scopus 로고
    • Linguistic modeling by hierarchical systems of linguistic rules
    • Cordon O., Herrera F., Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Syst. 2002, 10(1):2-20.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.1 , pp. 2-20
    • Cordon, O.1    Herrera, F.2    Zwir, I.3
  • 46
    • 75149139352 scopus 로고    scopus 로고
    • GP-COACH. genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems
    • Berlanga F.J., Rivera A.J., del Jesus M.J., Herrera F. GP-COACH. genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems. Inf. Sci. 2010, 180(8):1183-1200.
    • (2010) Inf. Sci. , vol.180 , Issue.8 , pp. 1183-1200
    • Berlanga, F.J.1    Rivera, A.J.2    del Jesus, M.J.3    Herrera, F.4
  • 47
    • 34548206770 scopus 로고    scopus 로고
    • A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection
    • Alcalá R., Alcalá-Fdez J., Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 2007, 15(4):616-635.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.4 , pp. 616-635
    • Alcalá, R.1    Alcalá-Fdez, J.2    Herrera, F.3
  • 49
    • 80052670129 scopus 로고    scopus 로고
    • Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index
    • Antonelli M., Ducange P., Lazzerini B., Marcelloni F. Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index. Soft Comput. 2011, 15(10):1981-1998.
    • (2011) Soft Comput. , vol.15 , Issue.10 , pp. 1981-1998
    • Antonelli, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 50
    • 81155126099 scopus 로고    scopus 로고
    • Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy complexity and partition integrity
    • Antonelli M., Ducange P., Lazzerini B., Marcelloni F. Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy complexity and partition integrity. Soft Comput. 2011, 15(12):2335-2354.
    • (2011) Soft Comput. , vol.15 , Issue.12 , pp. 2335-2354
    • Antonelli, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 51
    • 84859731717 scopus 로고    scopus 로고
    • Genetic training instance selection in multi-objective evolutionary fuzzy systems. a co-evolutionary approach
    • Antonelli M., Ducange P., Marcelloni F. Genetic training instance selection in multi-objective evolutionary fuzzy systems. a co-evolutionary approach. IEEE Trans. Fuzzy Syst. 2012, 20(2):276-290.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.2 , pp. 276-290
    • Antonelli, M.1    Ducange, P.2    Marcelloni, F.3
  • 52
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the Pareto archived evolution strategy
    • Knowles J.D., Corne D.W. Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 2000, 8(2):149-172.
    • (2000) Evol. Comput. , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 53
    • 84888059105 scopus 로고    scopus 로고
    • Multiobjective genetic programming for maximizing {ROC} performance
    • Wang P., Tang K., Weise T., Tsang E., Yao X. Multiobjective genetic programming for maximizing {ROC} performance. Neurocomputing 2014, 125(0):102-118.
    • (2014) Neurocomputing , vol.125 , Issue.0 , pp. 102-118
    • Wang, P.1    Tang, K.2    Weise, T.3    Tsang, E.4    Yao, X.5
  • 54
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac J., García S., Molina D., Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1(1):3-18.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 55
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32(200):675-701.
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 56
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman R.L., Davenport J.H. Approximations of the critical region of the Friedman statistic. Commun. Stat.-Theory Methods Part A 1980, 9:571-595.
    • (1980) Commun. Stat.-Theory Methods Part A , vol.9 , pp. 571-595
    • Iman, R.L.1    Davenport, J.H.2
  • 57
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6:65-70.
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1
  • 58
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1(6):80-83.
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 61
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G.E.A.P.A., Prati R.C., Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 2004, 6(1):20-29.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 62
    • 80052414830 scopus 로고    scopus 로고
    • Evolutionary-based selection of generalized instances for imbalanced classification
    • García S., Derrac J., Triguero I., Carmona C.J., Herrera F. Evolutionary-based selection of generalized instances for imbalanced classification. Knowl. Based Syst. 2012, 25(1):3-12.
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 3-12
    • García, S.1    Derrac, J.2    Triguero, I.3    Carmona, C.J.4    Herrera, F.5
  • 63
    • 56349163288 scopus 로고    scopus 로고
    • Combination approach of smote and biased-SVM for imbalanced datasets
    • IEEE International Joint Conference on Neural Networks, IJCNN
    • H.-Y. Wang, Combination approach of smote and biased-SVM for imbalanced datasets, in: IEEE International Joint Conference on Neural Networks, IJCNN, 2008, pp. 228-231.
    • (2008) , pp. 228-231
    • Wang, H.-Y.1
  • 64
    • 79957915328 scopus 로고    scopus 로고
    • Addressing data complexity for imbalanced data sets. analysis of SMOTE-based oversampling and evolutionary undersampling
    • Luengo J., Fernández A., García S., Herrera F. Addressing data complexity for imbalanced data sets. analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput. 2011, 15(10):1909-1936.
    • (2011) Soft Comput. , vol.15 , Issue.10 , pp. 1909-1936
    • Luengo, J.1    Fernández, A.2    García, S.3    Herrera, F.4
  • 66
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Proceedings of the Twelfth International Conference on Machine Learning, Morgan Kaufmann
    • W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth International Conference on Machine Learning, Morgan Kaufmann, 1995, pp. 115-123.
    • (1995) , pp. 115-123
    • Cohen, W.W.1
  • 67
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55(1):119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 68
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 69
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y., Kamel M.S., Wong A.K., Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40(12):3358-3378.
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 71
    • 67650505046 scopus 로고    scopus 로고
    • Diversity analysis on imbalanced data sets by using ensemble models
    • IEEE Symposium on Computational Intelligence and Data Mining, IEEE
    • S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: IEEE Symposium on Computational Intelligence and Data Mining, IEEE, 2009, pp. 324-331.
    • (2009) , pp. 324-331
    • Wang, S.1    Yao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.