메뉴 건너뛰기




Volumn 126, Issue , 2014, Pages 36-44

Diversity measures for one-class classifier ensembles

Author keywords

Combined classifier; Diversity measure; Machine learning; Multiple classifier system; One class classification

Indexed keywords

CLASSIFICATION MODELS; COMBINED CLASSIFIERS; COMPUTER EXPERIMENT; DIVERSITY MEASURE; MULTI-CLASS CLASSIFICATION; MULTIPLE CLASSIFIER SYSTEMS; ONE-CLASS CLASSIFICATION; ONE-CLASS CLASSIFIER;

EID: 84887613816     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.053     Document Type: Article
Times cited : (65)

References (53)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2 cv f test for comparing supervised classification learning algorithms
    • Alpaydin E. Combined 5×2 cv f test for comparing supervised classification learning algorithms. Neural Computation 1999, 11(8):1885-1892.
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 2
    • 84858795085 scopus 로고    scopus 로고
    • The impact of diversity on the accuracy of evidential classifier ensembles
    • Bi Y. The impact of diversity on the accuracy of evidential classifier ensembles. International Journal of Approximate Reasoning 2012, 53(4):584-607.
    • (2012) International Journal of Approximate Reasoning , vol.53 , Issue.4 , pp. 584-607
    • Bi, Y.1
  • 3
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection. a review
    • Bolton R.J., Hand D.J. Statistical fraud detection. a review. Statistical Science 2002, 17(3):235-255.
    • (2002) Statistical Science , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 4
    • 77952046540 scopus 로고    scopus 로고
    • "Good" and "bad" diversity in majority vote ensembles, in: MCS
    • G. Brown, L.I. Kuncheva, "Good" and "bad" diversity in majority vote ensembles, in: MCS, 2010, pp. 124-133.
    • (2010) , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2(2):121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0035164084 scopus 로고    scopus 로고
    • One-class SVM for learning in image retrieval, in: IEEE International Conference on Image Processing
    • Y. Chen, X.S. Zhou, T.S. Huang, One-class SVM for learning in image retrieval, in: IEEE International Conference on Image Processing, vol. 1, 2001, pp. 34-37.
    • (2001) , vol.1 , pp. 34-37
    • Chen, Y.1    Zhou, X.S.2    Huang, T.S.3
  • 8
    • 44349143433 scopus 로고    scopus 로고
    • Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections, in: Studies in Health Technology and Informatics
    • G. Cohen, H. Sax, A. Geissbuhler, Novelty detection using one-class parzen density estimator. An application to surveillance of nosocomial infections, in: Studies in Health Technology and Informatics, vol. 136, 2008, pp. 21-26.
    • (2008) , vol.136 , pp. 21-26
    • Cohen, G.1    Sax, H.2    Geissbuhler, A.3
  • 9
    • 82455164229 scopus 로고    scopus 로고
    • New trends and applications on hybrid artificial intelligence systems
    • Corchado E., Grana M., Woźniak M. New trends and applications on hybrid artificial intelligence systems. Neurocomputing 2012, 75:61-63.
    • (2012) Neurocomputing , vol.75 , pp. 61-63
    • Corchado, E.1    Grana, M.2    Woźniak, M.3
  • 11
    • 0032122079 scopus 로고    scopus 로고
    • Application of entropy and energy measures of fuzziness to processing of ECG signal
    • Czogala E., Leski J. Application of entropy and energy measures of fuzziness to processing of ECG signal. Fuzzy Sets and Systems 1998, 97(1):9-18.
    • (1998) Fuzzy Sets and Systems , vol.97 , Issue.1 , pp. 9-18
    • Czogala, E.1    Leski, J.2
  • 14
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes
    • Galar M., Fernández A., Barrenechea E., Bustince H., Herrera F. An overview of ensemble methods for binary classifiers in multi-class problems. experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 2011, 44(8):1761-1776.
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 17
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • Giacinto G., Perdisci R., Del Rio M., Roli F. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion 2008, 9:69-82.
    • (2008) Information Fusion , vol.9 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 18
    • 84887609099 scopus 로고    scopus 로고
    • A new efficient fuzzy diversity measure in classifier fusion, in: Proceedings of the IADIS Conference
    • A. Golestani, J. Azimi, M. Analoui, M. Kangavari, A new efficient fuzzy diversity measure in classifier fusion, in: Proceedings of the IADIS Conference, 2007, pp. 722-726.
    • (2007) , pp. 722-726
    • Golestani, A.1    Azimi, J.2    Analoui, M.3    Kangavari, M.4
  • 22
    • 84856961695 scopus 로고    scopus 로고
    • Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description
    • Jiang H., Liu G., Xiao X., Mei C., Ding Y., Yu S. Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description. Microchemical Journal 2012, 102:68-74.
    • (2012) Microchemical Journal , vol.102 , pp. 68-74
    • Jiang, H.1    Liu, G.2    Xiao, X.3    Mei, C.4    Ding, Y.5    Yu, S.6
  • 23
    • 84887617124 scopus 로고    scopus 로고
    • Learning to Recognise. A Study on One-Class Classification and Active Learning, Ph.D. Thesis, Delft University of Technology
    • P. Juszczak, Learning to Recognise. A Study on One-Class Classification and Active Learning, Ph.D. Thesis, Delft University of Technology, 2006.
    • (2006)
    • Juszczak, P.1
  • 24
    • 61849121774 scopus 로고    scopus 로고
    • Minimum spanning tree based one-class classifier
    • Juszczak P., Tax D.M.J., Pekalska E., Duin R.P.W. Minimum spanning tree based one-class classifier. Neurocomputing 2009, 72(7-9):1859-1869.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1859-1869
    • Juszczak, P.1    Tax, D.M.J.2    Pekalska, E.3    Duin, R.P.W.4
  • 25
    • 80052312109 scopus 로고    scopus 로고
    • Classifier committee based on feature selection method for obstructive nephropathy diagnosis, in: Studies in Computational Intelligence
    • B. Krawczyk, Classifier committee based on feature selection method for obstructive nephropathy diagnosis, in: Studies in Computational Intelligence, vol. 381, 2011, pp. 115-125.
    • (2011) , vol.381 , pp. 115-125
    • Krawczyk, B.1
  • 26
    • 84887614411 scopus 로고    scopus 로고
    • Diversity in ensembles for one-class classification, in: Current Developments in Databases and Information Systems, Advances in Intelligent and Soft Computing, Springer Berlin/Heidelberg
    • B. Krawczyk, Diversity in ensembles for one-class classification, in: Current Developments in Databases and Information Systems, Advances in Intelligent and Soft Computing, Springer Berlin/Heidelberg, 2012, pp. 119-129.
    • (2012) , pp. 119-129
    • Krawczyk, B.1
  • 27
    • 84858852827 scopus 로고    scopus 로고
    • Combining diverse one-class classifiers, in: Emilio Corchado, Vaclav Snasel, Ajith Abraham, Michal Wozniak, Manuel Grana, Sung-Bae Cho (Eds.), Hybrid Artificial Intelligent Systems, in: Lecture Notes in Computer Science, Springer Berlin/Heidelberg
    • B. Krawczyk, M. Woźniak, Combining diverse one-class classifiers, in: Emilio Corchado, Vaclav Snasel, Ajith Abraham, Michal Wozniak, Manuel Grana, Sung-Bae Cho (Eds.), Hybrid Artificial Intelligent Systems, in: Lecture Notes in Computer Science, vol. 7209, Springer Berlin/Heidelberg, 2012, pp. 590-601.
    • (2012) , vol.7209 , pp. 590-601
    • Krawczyk, B.1    Woźniak, M.2
  • 28
    • 84872568049 scopus 로고    scopus 로고
    • Experiments on distance measures for combining one-class classifiers, in: Proceedings of the FEDCISIS 2012 Conference
    • B. Krawczyk, M. Woźniak, Experiments on distance measures for combining one-class classifiers, in: Proceedings of the FEDCISIS 2012 Conference, 2012, pp. 88-92.
    • (2012) , pp. 88-92
    • Krawczyk, B.1    Woźniak, M.2
  • 30
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion. an experimental comparison
    • Kuncheva L.I., Bezdek J.C., Duin R.P.W. Decision templates for multiple classifier fusion. an experimental comparison. Pattern Recognition 2001, 34(2):299-314.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 31
    • 84887606682 scopus 로고    scopus 로고
    • Ten measures of diversity in classifier ensembles: limits for two classifiers, in: A DERA/IEE orkshop on Intelligent Sensor Processing (Ref. No. 2001/050), February 10/1-1010.\
    • L.I. Kuncheva, C.J. Whitaker, Ten measures of diversity in classifier ensembles: limits for two classifiers, in: A DERA/IEE Workshop on Intelligent Sensor Processing (Ref. No. 2001/050), February 2001, pp. 10/1-1010.
    • (2001)
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 33
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • Lai C., Reinders M.J.T., Wessels L. Random subspace method for multivariate feature selection. Pattern Recognition Letters 2006, 27(10):1067-1076.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.10 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.T.2    Wessels, L.3
  • 34
    • 33847410597 scopus 로고    scopus 로고
    • One-class document classification via neural networks
    • Manevitz L., Yousef M. One-class document classification via neural networks. Neurocomputing 2007, 70(7-9):1466-1481.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1466-1481
    • Manevitz, L.1    Yousef, M.2
  • 36
    • 84859537598 scopus 로고    scopus 로고
    • Frac. a feature-modeling approach for semi-supervised and unsupervised anomaly detection
    • Noto K., Brodley C., Slonim D. Frac. a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Mining and Knowledge Discovery 2012, 25(1):109-133.
    • (2012) Data Mining and Knowledge Discovery , vol.25 , Issue.1 , pp. 109-133
    • Noto, K.1    Brodley, C.2    Slonim, D.3
  • 37
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity. practical statistics for its measurement and exploitation
    • Partridge D., Krzanowski W. Software diversity. practical statistics for its measurement and exploitation. Information and Software Technology 1997, 39(10):707-717.
    • (1997) Information and Software Technology , vol.39 , Issue.10 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.2
  • 38
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 2006, 6(3):21-45.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 40
    • 84887606800 scopus 로고    scopus 로고
    • The boosting approach to machine Learning: an Overview, in: MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, USA
    • R.E. Schapire, The boosting approach to machine Learning: an Overview, in: MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, USA, 2001.
    • (2001)
    • Schapire, R.E.1
  • 41
    • 84887610869 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press
    • B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press, 2002.
    • (2002)
    • Schölkopf, B.1    Smola, A.J.2
  • 42
    • 84887609523 scopus 로고    scopus 로고
    • SIAM, Proceedings of the Eleventh SIAM International Conference on Data Mining
    • SDM 2011, April 28-30, 2011, Mesa, Arizona, USA, SIAM Omnipress
    • SIAM, Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona, USA, SIAM Omnipress, 2011.
    • (2011)
  • 44
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., Duin R.P.W. Support vector data description. Machine Learning 2004, 54(1):45-66.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 45
    • 33749645459 scopus 로고    scopus 로고
    • Outlier detection using ball descriptions with adjustable metric, in: Proceedings of the 2006 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition, SSPR'06/SPR'06, Berlin, Heidelberg, Springer-Verlag
    • D.M.J. Tax, P. Juszczak, E. Pekalska, R.P.W. Duin, Outlier detection using ball descriptions with adjustable metric, in: Proceedings of the 2006 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition, SSPR'06/SPR'06, Berlin, Heidelberg, Springer-Verlag, 2006, pp. 587-595.
    • (2006) , pp. 587-595
    • Tax, D.M.J.1    Juszczak, P.2    Pekalska, E.3    Duin, R.P.W.4
  • 46
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • Tax D.M.J., Van Breukelen M., Duin R.P.W., Kittler Josef Combining multiple classifiers by averaging or by multiplying?. Pattern Recognition 2000, 33(9):1475-1485.
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.M.J.1    Van Breukelen, M.2    Duin, R.P.W.3    Kittler, J.4
  • 48
    • 84887609326 scopus 로고
    • Theorem of the ugly duckling, in: Knowing and Guessing: A Quantitative Study of Inference and Information, Wiley
    • S. Watanabe, Theorem of the ugly duckling, in: Knowing and Guessing: A Quantitative Study of Inference and Information, Wiley, 1969.
    • (1969)
    • Watanabe, S.1
  • 49
    • 82455199200 scopus 로고    scopus 로고
    • Soft computing methods applied to combination of one-class classifiers
    • Wilk T., Woźniak M. Soft computing methods applied to combination of one-class classifiers. Neurocomputing 2012, 75:185-193.
    • (2012) Neurocomputing , vol.75 , pp. 185-193
    • Wilk, T.1    Woźniak, M.2
  • 50
    • 0037368938 scopus 로고    scopus 로고
    • Coding and decoding strategies for multi-class learning problems
    • Windeatt T., Ghaderi R. Coding and decoding strategies for multi-class learning problems. Information Fusion 2003, 4(1):11-21.
    • (2003) Information Fusion , vol.4 , Issue.1 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2
  • 51
    • 84887616656 scopus 로고    scopus 로고
    • The supervised learning no-free-lunch theorems, in: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications
    • D.H. Wolpert, The supervised learning no-free-lunch theorems, in: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications, 2001, pp. 25-42.
    • (2001) , pp. 25-42
    • Wolpert, D.H.1
  • 53
    • 54049102019 scopus 로고    scopus 로고
    • Recognition of blue movies by fusion of audio and video, in: 2008 IEEE International Conference on Multimedia and Expo, ICME 2008-Proceedings
    • H. Zuo, O. Wu, W. Hu, B. Xu, Recognition of blue movies by fusion of audio and video, in: 2008 IEEE International Conference on Multimedia and Expo, ICME 2008-Proceedings, 2008, pp. 37-40.
    • (2008) , pp. 37-40
    • Zuo, H.1    Wu, O.2    Hu, W.3    Xu, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.