-
1
-
-
33750292535
-
A meta-learning approach to automatic kernel selection for support vector machines
-
Ali S., and Smith-Miles K.A. A meta-learning approach to automatic kernel selection for support vector machines. Neurocomputing 70 (2006) 173-186
-
(2006)
Neurocomputing
, vol.70
, pp. 173-186
-
-
Ali, S.1
Smith-Miles, K.A.2
-
4
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 955-974
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 955-974
-
-
Burges, C.J.C.1
-
6
-
-
70350730004
-
-
C.C. Chang, C.J. Lin, LIBSVM: a library for Support Vector Machines 〈http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.ps.gz〉, 2001.
-
C.C. Chang, C.J. Lin, LIBSVM: a library for Support Vector Machines 〈http://www.csie.ntu.edu.tw/∼cjlin/papers/libsvm.ps.gz〉, 2001.
-
-
-
-
7
-
-
30744447120
-
Synergy of logistic regression and support vector machine in multi-class classification
-
Proceedings of the IDEAL, Springer, Berlin, Heidelberg
-
Y.-c.I. Chang, S.C. Lin, Synergy of logistic regression and support vector machine in multi-class classification, in: Proceedings of the IDEAL 2004, Lecture Notes in Computer Science, vol. 3177, Springer, Berlin, Heidelberg, 2004, pp. 132-141.
-
(2004)
Lecture Notes in Computer Science
, vol.3177
, pp. 132-141
-
-
Chang, Y.-C.I.1
Lin, S.C.2
-
9
-
-
70350720464
-
-
N.V. Chawla, N. Japkowicz, A. Kotcz, Editorial: special issue on learning from imbalanced data sets, in: Proceedings of the SIGKDD Explorations Newsletter, 6, ACM SIGKDD Explorations, 2004, pp. 1-6.
-
N.V. Chawla, N. Japkowicz, A. Kotcz, Editorial: special issue on learning from imbalanced data sets, in: Proceedings of the SIGKDD Explorations Newsletter, vol. 6, ACM SIGKDD Explorations, 2004, pp. 1-6.
-
-
-
-
11
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
Cohen G., Hilario M., Sax H., Hugonnet S., and Geissbuhler A. Learning from imbalanced data in surveillance of nosocomial infection. Artificial Intelligence in Medicine 37 (2006) 7-18
-
(2006)
Artificial Intelligence in Medicine
, vol.37
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
12
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler J., and Reli F. (Eds), Springer, Berlin, Heidelberg
-
Dietterich T.G. Ensemble methods in machine learning. In: Kittler J., and Reli F. (Eds). Multiple Classifier Systems, Lecture Notes in Computer Science vol. 1857 (2000), Springer, Berlin, Heidelberg 1-15
-
(2000)
Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
13
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 (2004) 255-273
-
(2004)
Machine Learning
, vol.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
14
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
Estabrooks A. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence 20 (2004) 18-36
-
(2004)
Computational Intelligence
, vol.20
, pp. 18-36
-
-
Estabrooks, A.1
-
15
-
-
0002178053
-
Bias reduction of maximum likelihood estimates
-
Firth D. Bias reduction of maximum likelihood estimates. Biometrika 80 (1993) 27-38
-
(1993)
Biometrika
, vol.80
, pp. 27-38
-
-
Firth, D.1
-
16
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28 (2000) 337-407
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
84886393706
-
z-SVM: an SVM for Improved classification of imbalanced data
-
Sattar A., and Kang B.H. (Eds), Springer, Berlin, Heidelberg
-
Imam T., Ting K.M., and Kamruzzaman J. z-SVM: an SVM for Improved classification of imbalanced data. In: Sattar A., and Kang B.H. (Eds). AI 2006: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence vol. 4304 (2006), Springer, Berlin, Heidelberg 264-273
-
(2006)
AI 2006: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence
, vol.4304
, pp. 264-273
-
-
Imam, T.1
Ting, K.M.2
Kamruzzaman, J.3
-
18
-
-
2242481419
-
Learning from imbalanced data sets: A comparison of various strategies
-
AAAI Press, Menlo Park, CA
-
N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, in: Tech Rep. WS-00-05, AAAI Workshop on Learning from Imbalanced Data Sets, AAAI Press, Menlo Park, CA, 2000.
-
(2000)
Tech Rep. WS-00-05, AAAI Workshop on Learning from Imbalanced Data Sets
-
-
Japkowicz, N.1
-
19
-
-
34248390180
-
Classifying imbalanced data using a bagging ensemble variation (bev)
-
ACM, New York
-
C. Li, Classifying imbalanced data using a bagging ensemble variation (bev), in: Proceedings of the ACM-SE 45, ACM, New York, 2007, pp. 203-208.
-
(2007)
Proceedings of the ACM-SE
, vol.45
, pp. 203-208
-
-
Li, C.1
-
21
-
-
84878098426
-
The influence of class imbalance on the cost-sensitive learning: an empirical study
-
IEEE The Computer Society
-
Liu X.Y., and Zhou Z.H. The influence of class imbalance on the cost-sensitive learning: an empirical study. Proceedings of the ICDM '06 (2006), IEEE The Computer Society
-
(2006)
Proceedings of the ICDM '06
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
24
-
-
10244243684
-
Meta-learning approaches to selecting time series models
-
Prudencio R.B.C., and Ludermir T.B. Meta-learning approaches to selecting time series models. Neurocomputing 61 (2004) 121-137
-
(2004)
Neurocomputing
, vol.61
, pp. 121-137
-
-
Prudencio, R.B.C.1
Ludermir, T.B.2
-
25
-
-
0000470917
-
Cluster analysis in marketing research: review and suggestion for application
-
Punj G., and Stewart D.W. Cluster analysis in marketing research: review and suggestion for application. Journal of Marketing Research 20 (1983) 134-148
-
(1983)
Journal of Marketing Research
, vol.20
, pp. 134-148
-
-
Punj, G.1
Stewart, D.W.2
-
26
-
-
35748932852
-
-
R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2007.
-
(2007)
R: A Language and Environment for Statistical Computing
-
-
-
32
-
-
38049121658
-
Online rare events detection
-
Zhou Z.H., Li H., and Yang Q. (Eds), Springer, Berlin, Heidelberg
-
Zhao J.H., Li X., and Dong Z.Y. Online rare events detection. In: Zhou Z.H., Li H., and Yang Q. (Eds). Advances in Knowledge Discovery and Data Mining, Lecture Notes in Artificial Intelligence vol. 4426 (2007), Springer, Berlin, Heidelberg 1114-1121
-
(2007)
Advances in Knowledge Discovery and Data Mining, Lecture Notes in Artificial Intelligence
, vol.4426
, pp. 1114-1121
-
-
Zhao, J.H.1
Li, X.2
Dong, Z.Y.3
|