메뉴 건너뛰기




Volumn 15, Issue 10, 2011, Pages 1981-1998

Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index

Author keywords

Accuracy interpretability trade off; Granularity learning; Interpretability index; Multi objective evolutionary fuzzy systems; Piecewise linear transformation

Indexed keywords

ACCURACY-INTERPRETABILITY TRADE-OFF; GRANULARITY LEARNING; INTERPRETABILITY; MULTI OBJECTIVE; PIECEWISE-LINEAR TRANSFORMATION;

EID: 80052670129     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-010-0629-4     Document Type: Article
Times cited : (24)

References (38)
  • 1
    • 33751166396 scopus 로고    scopus 로고
    • Genetic learning of accurate and compact fuzzy rule based systems based on the 2-Tuples linguistic representation
    • Alcalá R, Alcalá-Fdez J, Herrera F, Otero J (2007a) Genetic learning of accurate and compact fuzzy rule based systems based on the 2-Tuples linguistic representation. Int J Approx Reason 44: 45-64.
    • (2007) Int J Approx Reason , vol.44 , pp. 45-64
    • Alcalá, R.1    Alcalá-Fdez, J.2    Herrera, F.3    Otero, J.4
  • 2
    • 35348831258 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems
    • Alcalá R, Gacto MJ, Herrera F, Alcalá-Fdez J (2007b) A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int J Uncertain Fuzz Knowl Based Syst 15(5): 521-537.
    • (2007) Int J Uncertain Fuzz Knowl Based Syst , vol.15 , Issue.5 , pp. 521-537
    • Alcalá, R.1    Gacto, M.J.2    Herrera, F.3    Alcalá-Fdez, J.4
  • 3
    • 70350057609 scopus 로고    scopus 로고
    • A Multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems
    • Alcalá R, Ducange P, Herrera F, Lazzerini B, Marcelloni F (2009) A Multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems. IEEE Trans Fuzzy Syst 17(5): 1106-1122.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , Issue.5 , pp. 1106-1122
    • Alcalá, R.1    Ducange, P.2    Herrera, F.3    Lazzerini, B.4    Marcelloni, F.5
  • 4
    • 47049121435 scopus 로고    scopus 로고
    • HILK: a new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism
    • Alonso JM, Magdalena L, Guillaume S (2008) HILK: a new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. Int J Intell Syst 23: 761-794.
    • (2008) Int J Intell Syst , vol.23 , pp. 761-794
    • Alonso, J.M.1    Magdalena, L.2    Guillaume, S.3
  • 5
    • 71549145661 scopus 로고    scopus 로고
    • Looking for a good fuzzy system interpretability index: an experimental approach
    • Alonso JM, Magdalena L, González-Rodríguez G (2009) Looking for a good fuzzy system interpretability index: an experimental approach. Int J Approx Reason 51(1): 115-134.
    • (2009) Int J Approx Reason , vol.51 , Issue.1 , pp. 115-134
    • Alonso, J.M.1    Magdalena, L.2    González-Rodríguez, G.3
  • 6
    • 67649126200 scopus 로고    scopus 로고
    • Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework
    • Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2009a) Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework. Int J Approx Reason 50(7): 1066-1080.
    • (2009) Int J Approx Reason , vol.50 , Issue.7 , pp. 1066-1080
    • Antonelli, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 7
    • 80051529201 scopus 로고    scopus 로고
    • Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems
    • Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2009b) Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems. Evol Intel 2(1-2): 21-37.
    • (2009) Evol Intel , vol.2 , Issue.1-2 , pp. 21-37
    • Antonelli, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 8
    • 58049217458 scopus 로고    scopus 로고
    • Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index
    • Botta A, Lazzerini B, Marcelloni F, Stefanescu D (2009) Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput 13(5): 437-449.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 437-449
    • Botta, A.1    Lazzerini, B.2    Marcelloni, F.3    Stefanescu, D.4
  • 9
    • 0036683734 scopus 로고    scopus 로고
    • COR: a methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules
    • Casillas J, Cordón O, Herrera F (2002) COR: a methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules. IEEE Trans Syst Man Cybern 32(4): 526-537.
    • (2002) IEEE Trans Syst Man Cybern , vol.32 , Issue.4 , pp. 526-537
    • Casillas, J.1    Cordón, O.2    Herrera, F.3
  • 11
    • 34249908139 scopus 로고    scopus 로고
    • A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems
    • Cococcioni M, Ducange P, Lazzerini B, Marcelloni F (2007) A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems. Soft Comput 11(11): 1013-1031.
    • (2007) Soft Comput , vol.11 , Issue.11 , pp. 1013-1031
    • Cococcioni, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 13
    • 0035415952 scopus 로고    scopus 로고
    • Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base
    • Cordon O, Herrera F, Villar P (2001a) Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base. IEEE Trans Fuzzy Syst 9(4): 667-674.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , Issue.4 , pp. 667-674
    • Cordon, O.1    Herrera, F.2    Villar, P.3
  • 14
    • 0035426308 scopus 로고    scopus 로고
    • A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base
    • Cordon O, Herrera F, Magadalena L, Villar P (2001b) A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base. Inf Sci 136: 85-107.
    • (2001) Inf Sci , vol.136 , pp. 85-107
    • Cordon, O.1    Herrera, F.2    Magadalena, L.3    Villar, P.4
  • 15
    • 0032713743 scopus 로고    scopus 로고
    • Semantic constraints for membership function optimization
    • de Oliveira JV (1999) Semantic constraints for membership function optimization. IEEE Trans Syst Man Cybern Part A 29(1): 128-138.
    • (1999) IEEE Trans Syst Man Cybern Part A , vol.29 , Issue.1 , pp. 128-138
    • de Oliveira, J.V.1
  • 17
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • Ducange P, Lazzerini B, Marcelloni F (2009) Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft Comput 14(7): 713-728.
    • (2009) Soft Comput , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 18
    • 58049200709 scopus 로고    scopus 로고
    • Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    • Gacto MJ, Alcalá R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13(5): 419-436.
    • (2009) Soft Comput , vol.13 , Issue.5 , pp. 419-436
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 19
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems
    • doi: 10. 1109/TFUZZ. 2010. 2041008
    • Gacto MJ, Alcalá R, Herrera F (2010) Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans Fuzzy Syst. doi: 10. 1109/TFUZZ. 2010. 2041008.
    • (2010) IEEE Trans Fuzzy Syst
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 20
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: a genetic learning system based on the iterative approach
    • González A, Pérez R (1999) SLAVE: a genetic learning system based on the iterative approach. IEEE Trans Fuzzy Syst 7: 176-191.
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , pp. 176-191
    • González, A.1    Pérez, R.2
  • 21
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • Guillaume S (2001) Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans Fuzzy Syst 9(3): 426-443.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 22
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: taxonomy, current research trends and prospects
    • Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intel 1: 27-46.
    • (2008) Evol Intel , vol.1 , pp. 27-46
    • Herrera, F.1
  • 24
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1): 4-31.
    • (2007) Int J Approx Reason , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 25
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141(1): 59-88.
    • (2004) Fuzzy Sets Syst , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 26
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst 89(2): 135-150.
    • (1997) Fuzzy Sets Syst , vol.89 , Issue.2 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 27
    • 33646064451 scopus 로고    scopus 로고
    • Reducing the number of parameters of a fuzzy system using scaling functions
    • Klawonn F (2006) Reducing the number of parameters of a fuzzy system using scaling functions. Soft Comput 10(9): 749-756.
    • (2006) Soft Comput , vol.10 , Issue.9 , pp. 749-756
    • Klawonn, F.1
  • 28
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the non dominated front using the Pareto archived evolution strategy
    • Knowles JD, Corne DW (2002) Approximating the non dominated front using the Pareto archived evolution strategy. Evol Comput 8(2): 149-172.
    • (2002) Evol Comput , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 29
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1): 1-13.
    • (1975) Int J Man Mach Stud , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 30
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit
    • Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253): 68-78.
    • (1951) J Am Stat Assoc , vol.46 , Issue.253 , pp. 68-78
    • Massey, F.J.1
  • 31
    • 54049102777 scopus 로고    scopus 로고
    • Interpretability constraints for fuzzy information granulation
    • Mencar C, Fanelli AM (2008) Interpretability constraints for fuzzy information granulation. Inf Sci 178: 4585-4618.
    • (2008) Inf Sci , vol.178 , pp. 4585-4618
    • Mencar, C.1    Fanelli, A.M.2
  • 32
    • 33749665256 scopus 로고    scopus 로고
    • Distinguishability quantification of fuzzy sets
    • Mencar C, Castellano G, Fanelli AM (2007) Distinguishability quantification of fuzzy sets. Inf Sci 177: 130-149.
    • (2007) Inf Sci , vol.177 , pp. 130-149
    • Mencar, C.1    Castellano, G.2    Fanelli, A.M.3
  • 34
    • 76849113747 scopus 로고    scopus 로고
    • A dynamically constrained multiobjective genetic fuzzy system for regression problems
    • Pulkkinen P, Koivisto H (2010) A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans Fuzzy Syst 18(1): 161-177.
    • (2010) IEEE Trans Fuzzy Syst , vol.18 , Issue.1 , pp. 161-177
    • Pulkkinen, P.1    Koivisto, H.2
  • 35
    • 0014534297 scopus 로고
    • A new approach to clustering
    • Ruspini EH (1969) A new approach to clustering. Inform Control 15(1): 22-32.
    • (1969) Inform Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 36
    • 4844220240 scopus 로고    scopus 로고
    • Constructing a user-friendly ga-based fuzzy system directly from numerical data
    • Teng Y, Wang W (2004) Constructing a user-friendly ga-based fuzzy system directly from numerical data. IEEE Trans Syst Man Cybern B 34(5): 2060-2070.
    • (2004) IEEE Trans Syst Man Cybern B , vol.34 , Issue.5 , pp. 2060-2070
    • Teng, Y.1    Wang, W.2
  • 37
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6): 1414-1427.
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 38
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling
    • Zhou SM, Gan JQ (2008) Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets Syst 159: 3091-3131.
    • (2008) Fuzzy Sets Syst , vol.159 , pp. 3091-3131
    • Zhou, S.M.1    Gan, J.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.