메뉴 건너뛰기




Volumn 20, Issue 3, 2012, Pages 369-397

Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets

Author keywords

Feature selection; Fuzzy rule based classification systems; Genetic algorithms; Granularity level; Imbalanced data sets

Indexed keywords

CLASSIFICATION (OF INFORMATION); FEATURE SELECTION; FUZZY INFERENCE; FUZZY RULES; LEARNING ALGORITHMS;

EID: 84862112830     PISSN: 02184885     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218488512500195     Document Type: Article
Times cited : (30)

References (60)
  • 1
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla, N. Japkowicz, and A. Kolcz, Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations, vol. 6, no. 1, pp. 1-6, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 4
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • M. Mazurowski, P. Habas, J. Zurada, J. Lo, J. Baker, and G. Tourassi, Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance, Neural Networks, vol. 21, no. 2-3, pp. 427-436, 2008.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 427-436
    • Mazurowski, M.1    Habas, P.2    Zurada, J.3    Lo, J.4    Baker, J.5    Tourassi, G.6
  • 5
    • 40649114452 scopus 로고    scopus 로고
    • Robust BMPM training based on second-order cone programming and its application in medical diagnosis
    • X. Peng and I. King, Robust BMPM training based on second-order cone programming and its application in medical diagnosis, Neural Networks, vol. 21, no. 2-3, pp. 450-457, 2008.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 450-457
    • Peng, X.1    King, I.2
  • 6
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Y. M. Huang, C. M. Hung, and H. C. Jiau, Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem, Nonlinear Analysis: Real World Applications, vol. 7, no. 4, pp. 720-747, 2006.
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , Issue.4 , pp. 720-747
    • Huang, Y.M.1    Hung, C.M.2    Jiau, H.C.3
  • 7
    • 33846063260 scopus 로고    scopus 로고
    • Face recognition using total margin-based adaptive fuzzy support vector machines
    • DOI 10.1109/TNN.2006.883013
    • Y.-H. Liu and Y.-T. Chen, Face recognition using total margin-based adaptive fuzzy support vector machines, IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 178-192, 2007. (Pubitemid 46062926)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 178-192
    • Liu, Y.-H.1    Chen, Y.-T.2
  • 9
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • C.-H. Tsai, L.-C. Chang, and H.-C. Chiang, Forecasting of ozone episode days by cost-sensitive neural network methods, Science of the Total Environment, vol. 407, no. 6, pp. 2124-2135, 2009.
    • (2009) Science of the Total Environment , vol.407 , Issue.6 , pp. 2124-2135
    • Tsai, C.-H.1    Chang, L.-C.2    Chiang, H.-C.3
  • 10
    • 41549103711 scopus 로고    scopus 로고
    • Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme
    • W.-Z. Lu and D.Wang, Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme, Science of the Total Environment, vol. 395, no. 2-3, pp. 109-116, 2008.
    • (2008) Science of the Total Environment , vol.395 , Issue.2-3 , pp. 109-116
    • Lu, W.-Z.1    Wang, D.2
  • 12
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • A. Ferńandez, S. Garć-a, M. J. del Jesus, and F. Herrera, A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets, Fuzzy Sets and Systems, vol. 159, no. 18, pp. 2378-2398, 2008.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.18 , pp. 2378-2398
    • Ferńandez, A.1    Garć-A, S.2    Del Jesus, M.J.3    Herrera, F.4
  • 13
    • 0034321206 scopus 로고    scopus 로고
    • Analysis and guidelines to obtain a good uniform fuzzy partition granularity for fuzzy rule-based systems using simulated annealing
    • DOI 10.1016/S0888-613X(00)00052-9
    • O. Cord́on, F. Herrera, and P. Villar, Analysis and guidelines to obtain a good uniform fuzzy partition granularity for fuzzy rule-based systems using simulated annealing, International Journal of Approximate Reasoning, vol. 25, no. 3, pp. 187-215, 2000. (Pubitemid 32022617)
    • (2000) International Journal of Approximate Reasoning , vol.25 , Issue.3 , pp. 187-215
    • Cordon, O.1    Herrera, F.2    Villar, P.3
  • 14
    • 0035415952 scopus 로고    scopus 로고
    • Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base
    • DOI 10.1109/91.940977, PII S1063670601045301, Fuzzy Logic at the Turn of the Millennium
    • -, Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base, IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 667-674, 2001. (Pubitemid 32933051)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 667-674
    • Cordon, O.1    Herrera, F.2    Villar, P.3
  • 15
    • 0035426308 scopus 로고    scopus 로고
    • A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base
    • DOI 10.1016/S0020-0255(01)00143-8, PII S0020025501001438
    • O. Cord́on, F. Herrera, L. Magdalena, and P. Villar, A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base, Information Sciences, vol. 136, pp. 85-107, 2001. (Pubitemid 32621496)
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 85-107
    • Cordon, O.1    Herrera, F.2    Magdalena, L.3    Villar, P.4
  • 16
    • 34547681970 scopus 로고    scopus 로고
    • Fuzzy classifier design using genetic algorithms
    • DOI 10.1016/j.patcog.2007.03.028, PII S0031320307001665
    • E. Zhou and A. Khotanzad, Fuzzy classifier design using genetic algorithms, Pattern Recognition, vol. 40, no. 12, pp. 3401-3414, 2007. (Pubitemid 47223278)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3401-3414
    • Zhou, E.1    Khotanzad, A.2
  • 17
    • 34548397141 scopus 로고    scopus 로고
    • Genetic fuzzy systems to evolve interaction strategies in multiagent systems
    • DOI 10.1002/int.20234
    • I. Walter and F. Gomide, Genetic fuzzy systems to evolve interaction strategies in multiagent systems, International Journal of Intelligent Systems, vol. 22, no. 9, pp. 971-991, 2007. (Pubitemid 47359493)
    • (2007) International Journal of Intelligent Systems , vol.22 , Issue.9 , pp. 971-991
    • Walter, I.1    Gomide, F.2
  • 18
    • 71249086896 scopus 로고    scopus 로고
    • A genetic learning of the fuzzy rule-based classification system granularity for highly imbalanced data-sets in 2009
    • P. Villar, A. Ferńandez, and F. Herrera, A genetic learning of the fuzzy rule-based classification system granularity for highly imbalanced data-sets, in 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE09), 2009, pp. 1689-1694.
    • (2009) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE09) , pp. 1689-1694
    • Villar, P.1    Ferńandez, A.2    Herrera, F.3
  • 19
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • S. Halgamuge and M. Glesner, Neural networks in designing fuzzy systems for real world applications, Fuzzy Sets and Systems, vol. 65, no. 1, pp. 1-12, 1994.
    • (1994) Fuzzy Sets and Systems , vol.65 , Issue.1 , pp. 1-12
    • Halgamuge, S.1    Glesner, M.2
  • 20
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent & fuzzy systems, vol. 2, pp. 267-278, 1994.
    • (1994) Journal of Intelligent & Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.1
  • 21
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • J. Yen and L. Wang, Simplifying fuzzy rule-based models using orthogonal transformation methods, IEEE Transactions on System, Man and Cybernetics B, vol. 29, no. 1, pp. 13-24, 1999.
    • (1999) IEEE Transactions on System, Man and Cybernetics B , vol.29 , Issue.1 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 23
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Y. Jin, Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement, IEEE Transactions on Fuzzy Systems, vol. 8, no. 2, pp. 212-221, 2000.
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 24
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems, vol. 9, no. 3, pp. 260-270, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 25
    • 0031268161 scopus 로고    scopus 로고
    • A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples
    • PII S0888613X96001338
    • O. Cord́on and F. Herrera, A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples, International Journal of Approximate Reasoning, vol. 17, no. 4, pp. 369-407, 1997. (Pubitemid 127403031)
    • (1997) International Journal of Approximate Reasoning , vol.17 , Issue.4 , pp. 369-407
    • Cordon, O.1    Herrera, F.2
  • 26
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • DOI 10.1016/S0020-0255(01)00147-5, PII S0020025501001475
    • J. Casillas, O. Cord́on, M. J. del Jesus, and F. Herrera, Genetic feature selection in a fuzzy rule-based classification system learning process for high dimensional problems, Information Sciences, vol. 136, pp. 135-157, 2001. (Pubitemid 32621498)
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 27
    • 0005256939 scopus 로고    scopus 로고
    • Fuzzy algorithms with applications to image processing and pattern recognition
    • Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms with applications to image processing and pattern recognition. World Scientific, 1996.
    • (1996) World Scientific
    • Chi, Z.1    Yan, H.2    Pham, T.3
  • 29
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, A study of the behaviour of several methods for balancing machine learning training data, SIGKDD Explorations, vol. 6, no. 1, pp. 20-29, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 30
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced datasets
    • A. Orriols-Puig and E. Bernad́o-Mansilla, Evolutionary rule-based systems for imbalanced datasets, Soft Computing, vol. 13, no. 3, pp. 213-225, 2009.
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernad́o-Mansilla, E.2
  • 31
    • 33744797928 scopus 로고    scopus 로고
    • Knowledge acquisition through information granulation for imbalanced data
    • DOI 10.1016/j.eswa.2005.09.082, PII S0957417405002678
    • C.-T. Su, L.-S. Chen, and Y. Yih, Knowledge acquisition through information granulation for imbalanced data, Expert Systems with Applications, vol. 31, pp. 531-541, 2006. (Pubitemid 43831633)
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 531-541
    • Su, C.-T.1    Chen, L.-S.2    Yih, Y.3
  • 32
    • 34648841070 scopus 로고    scopus 로고
    • An evaluation of the robustness of MTS for imbalanced data
    • DOI 10.1109/TKDE.2007.190623
    • C.-T. Su and Y.-H. Hsiao, An evaluation of the robustness of MTS for imbalanced data, IEEE Transactions on Knowledge Data Engineering, vol. 19, no. 10, pp. 1321-1332, 2007. (Pubitemid 47460358)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.10 , pp. 1321-1332
    • Su, C.-T.1    Hsiao, Y.-H.2
  • 35
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Dem-sar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Dem-Sar, J.1
  • 36
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. Garć-a and F. Herrera, An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, Journal of Machine Learning Research, vol. 9, pp. 2677-2694, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garć-A, S.1    Herrera, F.2
  • 37
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. Garć-a, A. Ferńandez, J. Luengo, and F. Herrera, A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability, Soft Computing, vol. 13, no. 10, pp. 959-977, 2009.
    • (2009) Soft Computing , vol.13 , Issue.10 , pp. 959-977
    • Garć-A, S.1    Ferńandez, A.2    Luengo, J.3    Herrera, F.4
  • 38
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • DOI 10.1109/TFUZZ.2004.841738
    • H. Ishibuchi and T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, vol. 13, pp. 428-435, 2005. (Pubitemid 41461439)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 39
    • 60849127572 scopus 로고    scopus 로고
    • Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets
    • A. Ferńandez, M. J. del Jesus, and F. Herrera, Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets, International Journal of Approximate Reasoning, vol. 50, pp. 561-577, 2009.
    • (2009) International Journal of Approximate Reasoning , vol.50 , pp. 561-577
    • Ferńandez, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 40
    • 64049115860 scopus 로고    scopus 로고
    • On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets
    • -, On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets, Expert Systems With Applications, vol. 36, no. 6, pp. 9805-9812, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.6 , pp. 9805-9812
    • Ferńandez, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 42
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, Journal of Artificial Intelligence Research, vol. 19, pp. 315-354, 2003. (Pubitemid 41525924)
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 44
    • 50549093573 scopus 로고    scopus 로고
    • On the k-NN performance in a challenging scenario of imbalance and overlapping
    • V. Garć-a, R. Mollineda, and J. S. Śanchez, On the k-NN performance in a challenging scenario of imbalance and overlapping, Pattern Analysis Applications, vol. 11, no. 3-4, pp. 269-280, 2008.
    • (2008) Pattern Analysis Applications , vol.11 , Issue.3-4 , pp. 269-280
    • Garć-A, V.1    Mollineda, R.2    Śanchez, J.S.3
  • 45
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for learning in class imbalance problems
    • R. Barandela, J. S. Śanchez, V. Garć-a, and E. Rangel, Strategies for learning in class imbalance problems, Pattern Recognition, vol. 36, no. 3, pp. 849-851, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.3 , pp. 849-851
    • Barandela, R.1    Śanchez, J.S.2    Garć-A, V.3    Rangel, E.4
  • 46
    • 45849098303 scopus 로고    scopus 로고
    • An information granulation based data mining approach for classifying imbalanced data
    • M.-C. Chen, L.-S. Chen, C.-C. Hsu, and W.-R. Zeng, An information granulation based data mining approach for classifying imbalanced data, Information Sciences, vol. 178, no. 16, pp. 3214-3227, 2008.
    • (2008) Information Sciences , vol.178 , Issue.16 , pp. 3214-3227
    • Chen, M.-C.1    Chen, L.-S.2    Hsu, C.-C.3    Zeng, W.-R.4
  • 47
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • P. Ducange, B. Lazzerini, and F. Marcelloni, Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets, Soft Computing, vol. 14, no. 7, pp. 713-728, 2010.
    • (2010) Soft Computing , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 48
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • DOI 10.1109/TKDE.2005.95
    • G. Wu and E. Chang, KBA: Kernel boundary alignment considering imbalanced data distribution, IEEE Transactions on Knowledge Data Engineering, vol. 17, no. 6, pp. 786-795, 2005. (Pubitemid 40860458)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 49
    • 33947326736 scopus 로고    scopus 로고
    • Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification E-Algorithm
    • DOI 10.1109/TPWRS.2006.888990
    • L. Xu, M. Chow, and L. Taylor, Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm, IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 164-171, 2007. (Pubitemid 46437725)
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.1 , pp. 164-171
    • Xu, L.1    Chow, M.-Y.2    Taylor, L.S.3
  • 50
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz, A multiple resampling method for learning from imbalanced data sets, Computational Intelligence, vol. 20, no. 1, pp. 18-36, 2004.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 52
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, Cost-sensitive boosting for classification of imbalanced data, Pattern Recognition, vol. 40, pp. 3358-3378, 2007. (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 53
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • DOI 10.1109/TKDE.2006.17
    • Z.-H. Zhou and X.-Y. Liu, Training cost-sensitive neural networks with methods addressing the class imbalance problem, IEEE Transactions on Knowledge Data Engineering, vol. 18, no. 1, pp. 63-77, 2006. (Pubitemid 43145089)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 54
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • A. Ferńandez, M. J. del Jesus, and F. Herrera, On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets, Information Sciences, vol. 180, no. 8, pp. 1268-1291, 2010.
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1268-1291
    • Ferńandez, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 55
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 56
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • DOI 10.1109/TKDE.2005.50
    • J. Huang and C. X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299-310, 2005. (Pubitemid 40320164)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 57
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver operating characteristics (ROC) curve, Radiology, vol. 143, pp. 29-36, 1982. (Pubitemid 12142173)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 60
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. Garć-a, A. Ferńandez, J. Luengo, and F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Information Sciences, vol. 180, pp. 2044-2064, 2010.
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • Garć-A, S.1    Ferńandez, A.2    Luengo, J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.