메뉴 건너뛰기




Volumn 17, Issue 6, 2005, Pages 786-795

KBA: Kernel boundary alignment considering imbalanced data distribution

Author keywords

Imbalanced data training; Supervised classification; Support vector machines

Indexed keywords

BAYESIAN FRAMEWORK; IMBALANCED-DATA TRAINING; SUPERVISED CLASSIFICATION; SUPPORT VECTOR MACHINES;

EID: 20844441675     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2005.95     Document Type: Article
Times cited : (330)

References (30)
  • 1
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • S. Amari and S. Wu, "Improving Support Vector Machine Classifiers by Modifying Kernel Functions," Neural Networks, vol. 12, no. 6, pp. 783-789, 1999.
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • A.P. Bradley, "The Use of the Area under the Roc Curve in the Evaluation of Machine Learning Algorithms," Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0002500236 scopus 로고    scopus 로고
    • Improving minority class prediction using case-specific feature weights
    • C. Cardie and N. Howe, "Improving Minority Class Prediction Using Case-Specific Feature Weights," Proc. 14th Int'l Conf. Machine Learning, pp. 57-65, 1997.
    • (1997) Proc. 14th Int'l Conf. Machine Learning , pp. 57-65
    • Cardie, C.1    Howe, N.2
  • 6
    • 1942482069 scopus 로고    scopus 로고
    • Learning with non-uniform class and cost distributions: Effects and a distributed multi-classifier approach
    • P. Chan and S. Stolfo, "Learning with Non-Uniform Class and Cost Distributions: Effects and a Distributed Multi-Classifier Approach," Proc. Workshop Notes KDD-98 Distributed Data Mining, pp. 1-9, 1998.
    • (1998) Proc. Workshop Notes KDD-98 Distributed Data Mining , pp. 1-9
    • Chan, P.1    Stolfo, S.2
  • 9
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. Dietterich and G. Bakiri, "Solving Multiclass Learning Problems via Error-Correcting Output Codes," J. Artifical Intelligence Research, vol. 2, pp. 263-286, 1995.
    • (1995) J. Artifical Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.1    Bakiri, G.2
  • 10
    • 0004708854 scopus 로고    scopus 로고
    • Exploiting the cost (in)sensitivity of decision tree splitting criteria
    • C. Drummond and R. Holte, "Exploiting the Cost (in)Sensitivity of Decision Tree Splitting Criteria," Proc. 17th Int'l Conf. Machine Learning, pp. 239-246, 2000.
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 239-246
    • Drummond, C.1    Holte, R.2
  • 14
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," Proc. 10th European Conf. Machine Learning, pp. 137-142, 1998.
    • (1998) Proc. 10th European Conf. Machine Learning , pp. 137-142
    • Joachims, T.1
  • 17
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin, "Addressing the Curse of Imbalanced Training Sets: One-Sided Selection," Proc. 14th Int'l Conf. Machine Learning, pp. 179-186, 1997.
    • (1997) Proc. 14th Int'l Conf. Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 19
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Y. Lin, Y. Lee, and G. Wahba, "Support Vector Machines for Classification in Nonstandard Situations," Machine Learning, vol. 46, pp. 191-202, 2002.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 20
    • 0036630282 scopus 로고    scopus 로고
    • A solution for imbalanced training sets problem by combnet-ii and its application on fug forecasting
    • July
    • A. Nugroho, S. Kuroyanagi, and A. Iwata, "A Solution for Imbalanced Training Sets Problem by Combnet-ii and Its Application on Fug Forecasting," IEICE Trans. Information and Systems, vol. E85-D, no. 7, pp. 1165-1174, July 2002.
    • (2002) IEICE Trans. Information and Systems , vol.E85-D , Issue.7 , pp. 1165-1174
    • Nugroho, A.1    Kuroyanagi, S.2    Iwata, A.3
  • 22
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang, "Support Vector Machine Active Learning for Image Retrieval," Proc. ACM Int'l Conf. Multimedia, pp. 107-118, 2001.
    • (2001) Proc. ACM Int'l Conf. Multimedia , pp. 107-118
    • Tong, S.1    Chang, E.2
  • 25
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • June
    • G.M. Weiss, "Mining with Rarity: A Unifying Framework," SIGKDD Explorations, vol. 6, no. 1, pp. 7-19, June 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 26
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G.M. Weiss and F. Provost, "Learning When Training Data Are Costly: The Effect of Class Distribution on Tree Induction," J. Artificial Intelligence Research, vol. 19, pp. 315-354, 2003.
    • (2003) J. Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 27
    • 1942451958 scopus 로고    scopus 로고
    • Adaptive feature-space conformal transformation for imbalanced data learning
    • G. Wu and E. Chang, "Adaptive Feature-Space Conformal Transformation for Imbalanced Data Learning," Proc. 20th Int'l Conf. Machine Learning, pp. 816-823, 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning , pp. 816-823
    • Wu, G.1    Chang, E.2
  • 28
    • 2342569579 scopus 로고    scopus 로고
    • Multi-camera spatio-temporal fusion and biased sequence-data learning for security surveillance
    • Nov.
    • G. Wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Chang, "Multi-Camera Spatio-Temporal Fusion and Biased Sequence-Data Learning for Security Surveillance," Proc. ACM Int'l Conf. Multimedia, Nov. 2003.
    • (2003) Proc. ACM Int'l Conf. Multimedia
    • Wu, G.1    Wu, Y.2    Jiao, L.3    Wang, Y.-F.4    Chang, E.5
  • 29
    • 1942516495 scopus 로고    scopus 로고
    • New v-suppurt vector machines and their sequential minimal optimization
    • X. Wu and R. Srihari, "New v-Suppurt Vector Machines and Their Sequential Minimal Optimization," Proc. 20th Int'l Conf. Machine Learning, 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning
    • Wu, X.1    Srihari, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.