-
1
-
-
27144531570
-
A study of the behaviour of several methods for balancing machine learning training data
-
G. Batista, R. Prati and M. Monard, A study of the behaviour of several methods for balancing machine learning training data, ACM SIGKDD Explorations Newsletter 6(1) (2004), 20-29
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.1
Prati, R.2
Monard, M.3
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning 36(1) (1999), 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
70349884041
-
Ensembles of abstaining classifiers based on rule sets
-
J. Błaszczyński, J. Stefanowski and M. Zajac, Ensembles of abstaining classifiers based on rule sets, In Proceedings of the 18th International Symposium on Foundations of Intelligent Systems, ISMIS2009, LNAI 5722 (2009), 382-391.
-
(2009)
Proceedings of the 18th International Symposium on Foundations of Intelligent Systems, ISMIS2009, LNAI 5722
, pp. 382-391
-
-
Błaszczyński, J.1
Stefanowski, J.2
Zajac, M.3
-
4
-
-
79956285606
-
Integrating selective pre-processing of imbalanced data with Ivotes ensemble
-
J. Błaszczyński, M. Deckert, J. Stefanowski and Sz. Wilk, Integrating selective pre-processing of imbalanced data with Ivotes ensemble, In Proceedings of 7th International Conference RSCTC 2010 LNAI 6086 (2010), 148-157.
-
(2010)
Proceedings of 7th International Conference RSCTC 2010 LNAI 6086
, pp. 148-157
-
-
Błaszczyński, J.1
Deckert, M.2
Stefanowski, J.3
Wilk, Sz.4
-
5
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning 36 (1999), 85-103.
-
(1999)
Machine Learning
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
6
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. Chawla, K. Bowyer, L. Hall and W. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, Journal of Artifical Intelligence Research 16 (2002), 341-378.
-
(2002)
Journal of Artifical Intelligence Research
, vol.16
, pp. 341-378
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, W.4
-
7
-
-
9444297357
-
SMOTEBoost: Improving Prediction of the Minority Class in Boosting
-
Knowledge Discovery in Databases: PKDD 2003
-
N. Chawla, A. Lazarevic, L. Hall and K. Bowyer, SMOTEBoost: Improving prediction of the minority class in boosting, In Proceedings of the Principles of Knowledge Discovery in Databases, PKDD2003 (2003), 107-119. (Pubitemid 37231089)
-
(2003)
Lecture Notes in Computer Science
, Issue.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
8
-
-
37949004300
-
Data mining for imbalanced datasets: An overview, Chapter
-
O. Maimon and L. Rokach eds Springer-Verlag
-
N. Chawla, Data mining for imbalanced datasets: An overview, Chapter in O. Maimon and L. Rokach eds, The Data Mining and Knowledge Discovery Handbook, Springer-Verlag, 2005, pp. 853-867.
-
(2005)
The Data Mining and Knowledge Discovery Handbook
, pp. 853-867
-
-
Chawla, N.1
-
9
-
-
34249966007
-
The CN2 induction algorithm
-
P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning 3(4) (1989), 261-283.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
10
-
-
78049391627
-
A comparison of three voting methods for bagging with the MLEM2 algorithm
-
Springer-Verlag
-
C. Cohagan, J. Grzymala-Busse and Z. Hippe, A comparison of three voting methods for bagging with the MLEM2 algorithm, In Proceedings of the Intelligent Data Engineering and Automated Learning, IDEAL 2010, Springer-Verlag (2010), 118-125.
-
(2010)
Proceedings of the Intelligent Data Engineering and Automated Learning, IDEAL 2010
, pp. 118-125
-
-
Cohagan, C.1
Grzymala-Busse, J.2
Hippe, Z.3
-
11
-
-
0031269184
-
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
-
P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29(2) (1997), 103-130. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
12
-
-
34250080806
-
A weighted nearest neighbour algorithm for learning with symbolic features
-
S. Cost and S. Salzberg, A weighted nearest neighbour algorithm for learning with symbolic features, Machine Learning Journal 10(1) (1993), 1213-1228.
-
(1993)
Machine Learning Journal
, vol.10
, Issue.1
, pp. 1213-1228
-
-
Cost, S.1
Salzberg, S.2
-
14
-
-
84868677685
-
-
Accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics-Part C
-
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, A review on ensembles for class imbalance problem: Bagging, boosting and hybrid based approaches, Accepted for publication in IEEE Transactions on Systems, Man, and Cybernetics-Part C, 2011.
-
(2011)
A Review on Ensembles for Class Imbalance Problem: Bagging, Boosting and Hybrid Based Approaches
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
15
-
-
38449101377
-
An empirical study of the behaviour of classifiers on imbalanced and overlapped data sets
-
V. Garcia, J.S. Sanchez and R.A. Mollineda, An empirical study of the behaviour of classifiers on imbalanced and overlapped data sets, In Progress in Pattern Recognition, Image Analysis and Applications LNCS 4756 (2007), 397-406.
-
(2007)
Progress in Pattern Recognition, Image Analysis and Applications LNCS
, vol.4756
, pp. 397-406
-
-
Garcia, V.1
Sanchez, J.S.2
Mollineda, R.A.3
-
17
-
-
27544506327
-
An approach to imbalanced data sets based on changing rule strength
-
J.W. Grzymala-Busse, L.K. Goodwin and X. Zheng, An approach to imbalanced data sets based on changing rule strength, Learning from Imbalanced Data Sets, AAAI Workshop at the 17th Conference on AI (2000), 69-74.
-
(2000)
Learning from Imbalanced Data Sets, AAAI Workshop at the 17th Conference on AI
, pp. 69-74
-
-
Grzymala-Busse, J.W.1
Goodwin, L.K.2
Zheng, X.3
-
18
-
-
0035151960
-
Three discretization methods for rule induction
-
DOI 10.1002/1098-111X(200101)16:1<29::AID-INT4>3.0.CO;2-0
-
J.W. Grzymala-Busse and J. Stefanowski, Three approaches to numerical attribute discretization for rule induction, International Journal of Intelligent Systems 16(1) (2001), 29-38. (Pubitemid 32089955)
-
(2001)
International Journal of Intelligent Systems
, vol.16
, Issue.1
, pp. 29-38
-
-
Grzymala-Busse, J.W.1
Stefanowski, J.2
-
19
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost im approach
-
H. Guo and H. Victor, Learning from imbalanced data sets with boosting and data generation: The DataBoost IM approach, ACM SIGKDD Explorations Newsletter 6(1) (2004), 30-39.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Victor, H.2
-
21
-
-
0242370859
-
Attribute Interactions in Medical Data Analysis
-
Artificial Intelligence in Medicine
-
A. Jakulin, I. Bratko, D. Smrke, J. Demsar and B. Zupan, Attribute interactions in medical data analysis, M. Dojat, E. Keravnou and Barahona, eds, Proceedings of the 9th Conference on Artificial Intelligence in Medicine in Europe, AIME 2003 LNCS 2780 (2003), 229-238. (Pubitemid 37342897)
-
(2003)
Lecture Notes in Computer Science
, Issue.2780
, pp. 229-238
-
-
Jakulin, A.1
Bratko, I.2
Smrke, D.3
Demsar, J.4
Zupan, B.5
-
25
-
-
50249165945
-
Local cost sensitive learning for handling imbalanced data sets
-
M.G. Karagiannopoulos, D.S. Anyfantis, S.B. Kotsiantis and E. Pintelas, Local cost sensitive learning for handling imbalanced data sets, In Proceedings of the Mediterranean Conference on Control Automation (2007), 1-6.
-
(2007)
Proceedings of the Mediterranean Conference on Control Automation
, pp. 1-6
-
-
Karagiannopoulos, M.G.1
Anyfantis, D.S.2
Kotsiantis, S.B.3
Pintelas, E.4
-
26
-
-
79957943257
-
Classifying severly imbalanced data
-
W. Klement, Sz. Wilk, W. Michalowski and S. Matwin, Classifying severly imbalanced data, In Proceedings of the Canadian AI 2011 Conference, LNAI 6657 (2011), 258-263.
-
(2011)
Proceedings of the Canadian AI 2011 Conference, LNAI 6657
, pp. 258-263
-
-
Klement, W.1
Wilk, Sz.2
Michalowski, W.3
Matwin, S.4
-
30
-
-
70449371969
-
AESNB: Active example selection with Naïve Bayes classifier for learning from imbalanced biomedical data
-
M.S. Lee, J.K. Rhee, B.H. Kim and B.T. Zhang, AESNB: Active example selection with Naïve Bayes classifier for learning from imbalanced biomedical data, In Proceedings of the 9th IEEE International Conference on Bioinformatics and BioEngineering (2009), 15-21.
-
(2009)
Proceedings of the 9th IEEE International Conference on Bioinformatics and BioEngineering
, pp. 15-21
-
-
Lee, M.S.1
Rhee, J.K.2
Kim, B.H.3
Zhang, B.T.4
-
31
-
-
0001059008
-
The multi-purpose incremental learning system AQ15 and its testing application in three medical domains
-
R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac, The multi-purpose incremental learning system AQ15 and its testing application in three medical domains, In Proceedings of 5th National Conference on AI, AAAI-Press (1986), 619-625.
-
(1986)
Proceedings of 5th National Conference on AI, AAAI-Press
, pp. 619-625
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
32
-
-
79956276876
-
Learning from imbalanced data in presence of noisy and borderline examples
-
K. Napierala, J. Stefanowski and Sz. Wilk, Learning from imbalanced data in presence of noisy and borderline examples, In Proceedings of 7th International Conference RSCTC 2010, LNAI 6086 (2010), 158-167.
-
(2010)
Proceedings of 7th International Conference RSCTC 2010, LNAI 6086
, pp. 158-167
-
-
Napierala, K.1
Stefanowski, J.2
Wilk, Sz.3
-
35
-
-
9444270977
-
Class Imbalances versus Class Overlapping: An Analysis of a Learning System Behavior
-
MICAI 2004: Advances in Artificial Intelligence Third Mexican International Conference on Artificial Intelligence Mexico City, Mexico, April 26-30, 2004 Proceedings
-
R. Prati, G. Batista and M. Monard, Class imbalance versus class overlapping: An analysis of a learning system behaviour, In Proceedings of 3rd Mexican International Conference on Artificial Intelligence (2004), 312-321. (Pubitemid 38716795)
-
(2004)
Lecture Notes in Computer Science
, Issue.2972
, pp. 312-321
-
-
Prati, R.C.1
Batista, G.E.A.P.A.2
Monard, M.C.3
-
37
-
-
14344263324
-
Towards tight bounds for rule learning
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
U. Rucket and S. Kramer, Towards tight bounds for rule learning, In Proceedings of the 21st International Conference on Machine Learning, ICML2004 (2004), 711-718. (Pubitemid 40290872)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 711-718
-
-
Ruckert, U.1
Kramer, S.2
-
38
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick and B. Yu, eds Springer-Verlag
-
R.E. Schapire, The boosting approach to machine learning: An overview, D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick and B. Yu, eds, Nonlinear Estimation and Classification, Springer-Verlag, 2003.
-
(2003)
Nonlinear Estimation and Classification
-
-
Schapire, R.E.1
-
40
-
-
2942706831
-
-
Habilitation Thesis published as Series Rozprawy no. 361, Poznan University of Technology Press
-
J. Stefanowski, Algorithms of rule induction for knowledge discovery (in Polish), Habilitation Thesis published as Series Rozprawy no. 361, Poznan University of Technology Press, (2001), 18-21.
-
(2001)
Algorithms of Rule Induction for Knowledge Discovery (In Polish)
, pp. 18-21
-
-
Stefanowski, J.1
-
43
-
-
52949096003
-
Improving rule based classifiers induced by MODLEM by selective pre-processing of im-balanced data
-
J. Stefanowski and S. Wilk, Improving rule based classifiers induced by MODLEM by selective pre-processing of im-balanced data, In Proceedings of the RSKD Workshop at ECML/PKDD (2007), 54-65.
-
(2007)
Proceedings of the RSKD Workshop at ECML/PKDD
, pp. 54-65
-
-
Stefanowski, J.1
Wilk, S.2
-
45
-
-
67651243664
-
Extending rule-based classifiers to improve recognition of imbalanced classes
-
Z.W. Ras and A. Dardzinska, eds
-
J. Stefanowski and Sz. Wilk, Extending rule-based classifiers to improve recognition of imbalanced classes, Z.W. Ras and A. Dardzinska, eds, Advances in Data Management, Studies in Computational Intelligence 223 (2009), 131-154.
-
(2009)
Advances in Data Management, Studies in Computational Intelligence
, vol.223
, pp. 131-154
-
-
Stefanowski, J.1
Wilk, Sz.2
-
47
-
-
77957583037
-
Boosting support vector machines for imbalanced data sets
-
B. Wang and N. Japkowicz, Boosting support vector machines for imbalanced data sets, Knowledge and Information Systems 25(1) (2010), 1-20.
-
(2010)
Knowledge and Information Systems
, vol.25
, Issue.1
, pp. 1-20
-
-
Wang, B.1
Japkowicz, N.2
-
48
-
-
20844458491
-
Mining with rarity: A unifying framework
-
G.M. Weiss, Mining with rarity: A unifying framework, ACM SIGKDD Explorations Newsletter 6(1) (2004), 7-19.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
49
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
DOI 10.1023/A:1007626913721
-
D.R. Wilson and T. Martinez, Reduction techniques for instance-based learning algorithms, Machine Learning Journal 38 (2000), 257-286. (Pubitemid 30572450)
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 257-286
-
-
Randall Wilson, D.1
Martinez, T.R.2
|