메뉴 건너뛰기




Volumn 53, Issue 2, 2015, Pages 770-783

Sparse unmixing of hyperspectral data using spectral a priori information

Author keywords

Alternating direction method of multipliers (ADMM); hyperspectral unmixing; sparse unmixing; spectral a priori information

Indexed keywords

ELECTRICAL ENGINEERING; GEOLOGY;

EID: 84906315751     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2328336     Document Type: Article
Times cited : (127)

References (54)
  • 1
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 2
    • 4143076953 scopus 로고    scopus 로고
    • Why use hyperspectral imagery?
    • Apr.
    • P. Shippert, "Why use hyperspectral imagery?" Photogramm. Eng. Remote Sens., Vol. 70, no. 4, pp. 377-396, Apr. 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.4 , pp. 377-396
    • Shippert, P.1
  • 3
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., Vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 4
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • Jan.
    • M. Petrou and P. G. Foschi, "Confidence in linear spectral unmixing of single pixels," IEEE Trans. Geosci. Remote Sens., Vol. 37, no. 1, pp. 624-626, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.G.2
  • 5
    • 0032710686 scopus 로고    scopus 로고
    • Optimal linear spectral unmixing
    • Jan.
    • Y. Hu, H. Lee, and F. Scarpace, "Optimal linear spectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 37, no. 1, pp. 639-644, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 639-644
    • Hu, Y.1    Lee, H.2    Scarpace, F.3
  • 6
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop, 1993, Vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 7
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectral data
    • Vancouver, BC, Canada, Apr.
    • M. Winter, "Fast autonomous spectral end-member determination in hyperspectral data," in Proc. 13th Int. Conf. Appl. Geol. Remote Sens., Vancouver, BC, Canada, Apr. 1999, Vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. Appl. Geol. Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.1
  • 8
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., Vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 9
    • 7044222060 scopus 로고    scopus 로고
    • Ice: A statistical approach to identifying endmembers in hyperspectral images
    • Oct.
    • M. Berman et al., "Ice: A statistical approach to identifying endmembers in hyperspectral images," IEEE Trans. Geosci. Remote Sens., Vol. 42, no. 10, pp. 2085-2095, Oct. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.10 , pp. 2085-2095
    • Berman, M.1
  • 10
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, Vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 11
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Appl., Vol. 416, no. 1, pp. 29-47, Jul. 2006. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 12
    • 79960926086 scopus 로고    scopus 로고
    • A quantitative analysis of virtual endmembers' increased impact on the collinearity effect in spectral unmixing
    • Aug.
    • X. Chen et al., "A quantitative analysis of virtual endmembers' increased impact on the collinearity effect in spectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 49, no. 8, pp. 2945-2956, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.8 , pp. 2945-2956
    • Chen, X.1
  • 14
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Seung and L. Lee, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst., 2001, Vol. 13, pp. 556-562.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Seung, D.1    Lee, L.2
  • 15
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 17
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse nmf for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse nmf for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 51, no. 1, pp. 2815-2806, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 2815-2806
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 20
    • 84255178230 scopus 로고    scopus 로고
    • Sparse demixing of hyperspectral images
    • Jan.
    • J. B. Greer, "Sparse demixing of hyperspectral images," IEEE Trans. Image Process., Vol. 21, no. 1, pp. 219-228, Jan. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.1 , pp. 219-228
    • Greer, J.B.1
  • 21
    • 77952743135 scopus 로고    scopus 로고
    • Computational methods for sparse solution of linear inverse problems
    • Jun.
    • J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE, Vol. 98, no. 6, pp. 948-958, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 23
    • 78649271874 scopus 로고    scopus 로고
    • Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing
    • J. M. Bioucas-Dias and M. A. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing," in Proc. IEEE WHISPERS, 2010, pp. 1-4.
    • (2010) Proc. IEEE WHISPERS , pp. 1-4
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.2
  • 24
    • 84855912794 scopus 로고    scopus 로고
    • A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing
    • Feb.
    • K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing," IEEE Trans. Signal Process., Vol. 60, no. 2, pp. 585-599, Feb. 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.2 , pp. 585-599
    • Themelis, K.E.1    Rontogiannis, A.A.2    Koutroumbas, K.D.3
  • 26
    • 84886721535 scopus 로고    scopus 로고
    • Sparse hyperspectral unmixing using an approximate 10 norm
    • Jan.
    • W. Tang, Z. Shi, and Z. Duren, "Sparse hyperspectral unmixing using an approximate 10 norm," Optik, Int. J. Light Electron Opt., Vol. 125, no. 1, pp. 31-38, Jan. 2014.
    • (2014) Optik, Int. J. Light Electron Opt. , vol.125 , Issue.1 , pp. 31-38
    • Tang, W.1    Shi, Z.2    Duren, Z.3
  • 27
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 29
    • 84898602204 scopus 로고    scopus 로고
    • Regularized simultaneous forwardbackward greedy algorithm for sparse unmixing of hyperspectral data
    • Sep.
    • W. Tang, Z. Shi, and Y. Wu, "Regularized simultaneous forwardbackward greedy algorithm for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 9, pp. 5271-5288, Sep. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5271-5288
    • Tang, W.1    Shi, Z.2    Wu, Y.3
  • 31
    • 84890430996 scopus 로고    scopus 로고
    • Collaborative sparse regression for hyperspectral unmixing
    • Jan.
    • M.-D. Iordache, J. M. B. Dias, and A. Plaza, "Collaborative sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 1, pp. 341-354, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 341-354
    • Iordache, M.-D.1    Dias, J.M.B.2    Plaza, A.3
  • 32
    • 84896397988 scopus 로고    scopus 로고
    • Subspace matching pursuit for sparse unmixing of hyperspectral data
    • Jun.
    • Z. Shi, W. Tang, Z. Duren, and Z. Jiang, "Subspace matching pursuit for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 6, pp. 3256-3274, Jun. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3256-3274
    • Shi, Z.1    Tang, W.2    Duren, Z.3    Jiang, Z.4
  • 33
    • 84898600161 scopus 로고    scopus 로고
    • Music-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression
    • Jul.
    • M.-D. Iordache, J. M. Bioucas-Dias, A. Plaza, and B. Somers, "Music-CSR: Hyperspectral unmixing via multiple signal classification and collaborative sparse regression," IEEE Trans. Geosci. Remote Sens., Vol. 52, no. 7, pp. 4364-4382, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 4364-4382
    • Iordache, M.-D.1    Bioucas-Dias, J.M.2    Plaza, A.3    Somers, B.4
  • 34
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems
    • Dec.
    • R. N. Clark et al., "Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems," J. Geophys. Res., Vol. 108, no. E12, pp. 5131-5175, Dec. 2003.
    • (2003) J. Geophys. Res. , vol.108 , Issue.E12 , pp. 5131-5175
    • Clark, R.N.1
  • 36
    • 84891821269 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for hyperspectral unmixing using prior knowledge of spectral signatures
    • Aug.
    • W. Tang, Z. Shi, and Z. An, "Nonnegative matrix factorization for hyperspectral unmixing using prior knowledge of spectral signatures," Opt. Eng., Vol. 51, no. 8, pp. 087001-1-087001-10, Aug. 2012.
    • (2012) Opt. Eng. , vol.51 , Issue.8 , pp. 1-10
    • Tang, W.1    Shi, Z.2    An, Z.3
  • 38
    • 79951838072 scopus 로고    scopus 로고
    • An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems
    • Mar.
    • M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, "An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems," IEEE Trans. Image Process., Vol. 20, no. 3, pp. 681-695, Mar. 2011.
    • (2011) IEEE Trans. Image Process , vol.20 , Issue.3 , pp. 681-695
    • Afonso, M.V.1    Bioucas-Dias, J.M.2    Figueiredo, M.A.3
  • 40
    • 84858774470 scopus 로고    scopus 로고
    • High-dimensional support union recovery in multivariate regression
    • G. Obozinski, M. J. Wainwright, and M. I. Jordan, "High-dimensional support union recovery in multivariate regression," in Proc. NIPS, 2008, pp. 1217-1224.
    • (2008) Proc. NIPS , pp. 1217-1224
    • Obozinski, G.1    Wainwright, M.J.2    Jordan, M.I.3
  • 41
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l 2, 1-norm minimization
    • J. Liu, S. Ji, and J. Ye, "Multi-task feature learning via efficient l 2, 1-norm minimization," in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 339-348.
    • (2009) Proc. 25th Conf. Uncertainty Artif. Intell. , pp. 339-348
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 42
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C. Chang, "Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., Vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 43
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • DOI 10.1109/36.841987
    • C. A. Bateson, G. P. Asner, and C. A. Wessman, "Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., Vol. 38, no. 2, pp. 1083-1094, Mar. 2000. (Pubitemid 30594771)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , pp. 1083-1094
    • Ann Bateson, C.1    Asner, G.P.2    Wessman, C.A.3
  • 44
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Process., Vol. 86, no. 3, pp. 572-588, Mar. 2006. (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 45
    • 73049115925 scopus 로고    scopus 로고
    • Sparsity and persistence: Mixed norms provide simple signal models with dependent coefficients
    • Sep.
    • M. Kowalski and B. Torrésani, "Sparsity and persistence: Mixed norms provide simple signal models with dependent coefficients," Signal, Image Video Process., Vol. 3, no. 3, pp. 251-264, Sep. 2009.
    • (2009) Signal, Image Video Process , vol.3 , Issue.3 , pp. 251-264
    • Kowalski, M.1    Torrésani, B.2
  • 46
    • 33947142837 scopus 로고    scopus 로고
    • Theoretical results on sparse representations of multiple-measurement vectors
    • DOI 10.1109/TSP.2006.881263
    • J. Chen and X. Huo, "Theoretical results on sparse representations of multiple-measurement vectors," IEEE Trans. Signal Process., Vol. 54, no. 12, pp. 4634-4643, Dec. 2006. (Pubitemid 46405606)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.12 , pp. 4634-4643
    • Chen, J.1    Huo, X.2
  • 47
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparse recovery using convex relaxation
    • Jan.
    • Y. C. Eldar and H. Rauhut, "Average case analysis of multichannel sparse recovery using convex relaxation," IEEE Trans. Inf. Theory, Vol. 56, no. 1, pp. 505-519, Jan. 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.C.1    Rauhut, H.2
  • 49
    • 0027113845 scopus 로고
    • On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators
    • Apr.
    • J. Eckstein and D. P. Bertsekas, "On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators," Math. Programm., Vol. 55, no. 1-3, pp. 293-318, Apr. 1992.
    • (1992) Math. Programm. , vol.55 , Issue.1-3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 50
    • 0034239566 scopus 로고    scopus 로고
    • Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities
    • Aug.
    • B. He, H. Yang, and S. Wang, "Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities," J. Optim. Theory Appl., Vol. 106, no. 2, pp. 337-356, Aug. 2000.
    • (2000) J. Optim. Theory Appl. , vol.106 , Issue.2 , pp. 337-356
    • He, B.1    Yang, H.2    Wang, S.3
  • 51
    • 0035343644 scopus 로고    scopus 로고
    • Decomposition method with a variable parameter for a class of monotone variational inequality problems
    • DOI 10.1023/A:1017522623963
    • S. Wang and L. Liao, "Decomposition method with a variable parameter for a class of monotone variational inequality problems," J. Optim. Theory Appl., Vol. 109, no. 2, pp. 415-429, May 2001. (Pubitemid 33383277)
    • (2001) Journal of Optimization Theory and Applications , vol.109 , Issue.2 , pp. 415-429
    • Wang, S.L.1    Liao, L.Z.2
  • 52
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan.
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., Vol. 3, no. 1, pp. 1-122, Jan. 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.