메뉴 건너뛰기




Volumn 125, Issue 1, 2014, Pages 31-38

Sparse hyperspectral unmixing using an approximate L0 norm

Author keywords

Hyperspectral unmixing; L0 minimization; Reweighted L1 minimization; Sparse hyperspectral unmixing; Spectral library

Indexed keywords

HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; HYPERSPECTRAL UNMIXING; ITERATION ALGORITHMS; SPARSE REGRESSION; SPARSITY REGULARIZATIONS; SPECTRAL LIBRARIES; SPECTRAL SIGNATURE;

EID: 84886721535     PISSN: 00304026     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijleo.2013.06.073     Document Type: Article
Times cited : (29)

References (40)
  • 2
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • J.P.V.P. Pauca, and R.J. Plemmons Nonnegative matrix factorization for spectral data analysis Linear Algebra Appl. 416 1 2006 29 47
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, J.P.V.P.1    Plemmons, R.J.2
  • 3
    • 80455174036 scopus 로고    scopus 로고
    • Chance-constrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • W.M.A. Ambikapathi, T. Chan, and C. Chi Chance-constrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing IEEE Trans. Geosci. Remote Sens. 49 11 2011 4194 4209
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4194-4209
    • Ambikapathi, W.M.A.1    Chan, T.2    Chi, C.3
  • 4
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • R.P.A. Plaza, P. Martinez, and J. Plaza A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data IEEE Trans. Geosci. Remote Sens. 42 3 2004 650 663
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, R.P.A.1    Martinez, P.2    Plaza, J.3
  • 5
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectral data
    • Vancouver, BC, Canada
    • M. Winter Fast autonomous spectral end-member determination in hyperspectral data Proc. 13th Int. Conf. Appl. Geologic Remote Sens., vol. 2 Vancouver, BC, Canada 1999 337 344
    • (1999) Proc. 13th Int. Conf. Appl. Geologic Remote Sens., Vol. 2 , pp. 337-344
    • Winter, M.1
  • 7
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J.M. Nascimento, and J. Bioucas-Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.2
  • 8
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Y.M.H.T.H. Chan, C.Y. Chi, and W.K. Ma A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing IEEE Trans. Geosci. Remote Sens. 47 11 2009 4418 4432
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 4418-4432
    • Chan, Y.M.H.T.H.1    Chi, C.Y.2    Ma, W.K.3
  • 11
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • Y.A. Abderrahim Halimi, and N. Dobigeon Nonlinear unmixing of hyperspectral images using a generalized bilinear model IEEE Trans. Geosci. Remote Sens. 49 11 2011 4153 4162
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4153-4162
    • Abderrahim Halimi, Y.A.1    Dobigeon, N.2
  • 12
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the viking lander 1 site
    • M.O.S.J.B. Adams, and P.E. Johnson Spectral mixture modeling: a new analysis of rock and soil types at the viking lander 1 site J. Geophys. Res. 91 1986 8098 8112
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • Adams, M.O.S.J.B.1    Johnson, P.E.2
  • 13
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • D.C. Heinz, and C. Chang Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 39 3 2001 529 545
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.2
  • 14
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • J. Settle On the relationship between spectral unmixing and subspace projection IEEE Trans. Geosci. Remote Sens. 34 4 1996 1045 1046
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.1
  • 15
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery
    • J.T.N. Dobigeon, and C. Chang Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery IEEE Trans. Signal Process 56 7 2008 2684 2695
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, J.T.N.1    Chang, C.2
  • 16
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery
    • C.M.O. Eches, N. Dobigeon, and J. Tourneret Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery IEEE Trans. Image Process. 19 6 2010 1403 1413
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6 , pp. 1403-1413
    • Eches, C.M.O.1    Dobigeon, N.2    Tourneret, J.3
  • 17
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero, and U. Tapper Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values Environmetrics 5 2 1994 116 126
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 116-126
    • Paatero, P.1    Tapper, U.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by nonnegative matrix factorization Nature 401 6755 1999 788 791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao, and H. Qi Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization IEEE Trans. Geosci. Remote Sens. 45 3 2007 765 777
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 23
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • J.M.B.-D. Marian-Daniel Iordache, and A. Plaza Total variation spatial regularization for sparse hyperspectral unmixing IEEE Trans. Geosci. Remote Sens. 50 11 2012 4484 4502
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Marian-Daniel Iordache, J.M.B.-D.1    Plaza, A.2
  • 26
    • 0000976724 scopus 로고    scopus 로고
    • The gaussian hare and the laplacian tortoise: Computability of squared-error versus absolute-error estimators
    • S. Portnoy, and R. Koenker The gaussian hare and the laplacian tortoise: computability of squared-error versus absolute-error estimators Stat. Sci. 12 4 1997 279 300
    • (1997) Stat. Sci. , vol.12 , Issue.4 , pp. 279-300
    • Portnoy, S.1    Koenker, R.2
  • 27
    • 0036172026 scopus 로고    scopus 로고
    • Alternative methods of linear regression
    • A. Giloni, and M. Padberg Alternative methods of linear regression Math. Comput. Model. 35 2002 361 374
    • (2002) Math. Comput. Model. , vol.35 , pp. 361-374
    • Giloni, A.1    Padberg, M.2
  • 30
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part i: Greedy pursuit
    • A.C.G.J.A. Tropp, and M.J. Strauss Algorithms for simultaneous sparse approximation. Part i: greedy pursuit Signal Process. 86 3 2006 572 588
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, A.C.G.J.A.1    Strauss, M.J.2
  • 31
    • 84886730297 scopus 로고    scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Los Alamitos, CA, USA
    • R.R.Y.C. Pati, and P. Krishnaprasad Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition Proc. 27th Asilomar Conference Los Alamitos, CA, USA 2003
    • (2003) Proc. 27th Asilomar Conference
    • Pati, R.R.Y.C.1    Krishnaprasad, P.2
  • 32
    • 33947142837 scopus 로고    scopus 로고
    • Theoretical results on sparse representations of multiple-measurement vectors
    • J. Chen, and X. Huo Theoretical results on sparse representations of multiple-measurement vectors IEEE Trans. Signal Process. 54 12 2006 4634 4643
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.12 , pp. 4634-4643
    • Chen, J.1    Huo, X.2
  • 33
    • 33646800236 scopus 로고    scopus 로고
    • Sparse representations for multiple measurement vectors (MMV) in an overcomplete dictionary
    • J. Chen, and X. Huo Sparse representations for multiple measurement vectors (MMV) in an overcomplete dictionary ICASSP 2005 2005 257 260
    • (2005) ICASSP 2005 , pp. 257-260
    • Chen, J.1    Huo, X.2
  • 34
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • W. Dai, and O. Milenkovic Subspace pursuit for compressive sensing signal reconstruction IEEE Trans. Inform. Theory 55 5 2009 2230 2249
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 35
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • D.D.S. Chen, and M. Saunders Atomic decomposition by basis pursuit SIAM Rev. 43 1 2001 129 159
    • (2001) SIAM Rev. , vol.43 , Issue.1 , pp. 129-159
    • Chen, D.D.S.1    Saunders, M.2
  • 36
    • 58649115827 scopus 로고    scopus 로고
    • A fast approach for overcomplete sparse decomposition based on smoothed l0 norm
    • M.B.-Z. Hosein Mohimani, and C. Jutten A fast approach for overcomplete sparse decomposition based on smoothed l0 norm IEEE Trans. Signal Process. 57 1 2009 289 301
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.1 , pp. 289-301
    • Hosein Mohimani, M.B.-Z.1    Jutten, C.2
  • 38
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • H. Zou, and R.Z. Li One-step sparse estimates in nonconcave penalized likelihood models Ann. Stat. 36 2008 1509 1533
    • (2008) Ann. Stat. , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.Z.2
  • 39
    • 0024599612 scopus 로고
    • Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients
    • M.J.-J.I.F.F.T.A. Stamey, J.N. Kabalin, and Y.N.E.A. Redwine Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. ii. Radical prostatectomy treated patients J. Urol. 141 5 1989 1076 1083
    • (1989) J. Urol. , vol.141 , Issue.5 , pp. 1076-1083
    • Stamey, M.J.-J.I.F.F.1    Kabalin, J.N.2    Redwine, Y.N.E.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.