메뉴 건너뛰기




Volumn 10, Issue 5, 2013, Pages 1142-1146

Sparse hyperspectral unmixing based on constrained ℓp - ℓ2 optimization

Author keywords

Abundance; endmember; hyperspectral; sparse regression; spectral unmixing

Indexed keywords

ABUNDANCE; ENDMEMBERS; HYPERSPECTRAL; SPARSE REGRESSION; SPECTRAL UNMIXING;

EID: 84879930808     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2012.2232901     Document Type: Article
Times cited : (67)

References (21)
  • 1
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 3
    • 0033310314 scopus 로고    scopus 로고
    • N-finder: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-finder: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE, 1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 4
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 5
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 6
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C. I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 7
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspetral image enhancement
    • Z. Guo, T. Wittman, and S. Osher, "L1 unmixing and its application to hyperspetral image enhancement," in Proc. SPIE, 2009, vol. 7334, pp. 73341M-1-73341M-9.
    • (2009) Proc. SPIE , vol.7334
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 8
    • 78650876624 scopus 로고    scopus 로고
    • Recent developments in sparse hyperspectral unmixing
    • M.-D. Iordache, A. Plaza, and J. M. Bioucas-Dias, "Recent developments in sparse hyperspectral unmixing," in Proc. IEEE IGARSS, 2010, pp. 1281-1284.
    • (2010) Proc. IEEE IGARSS , pp. 1281-1284
    • Iordache, M.-D.1    Plaza, A.2    Bioucas-Dias, J.M.3
  • 10
    • 84255178230 scopus 로고    scopus 로고
    • Sparse demixing of hyperspectral images
    • Jan
    • J. B. Greer, "Sparse demixing of hyperspectral images," IEEE Trans. Image Process., vol. 21, no. 1, pp. 219-228, Jan. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.1 , pp. 219-228
    • Greer, J.B.1
  • 11
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Feb
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images," SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 12
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 14
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • DOI 10.1109/LSP.2007.898300
    • R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, Oct. 2007. (Pubitemid 47434090)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.10 , pp. 707-710
    • Chartrand, R.1
  • 15
    • 51449111119 scopus 로고    scopus 로고
    • Iteratively reweighted algorithms for compressive sensing
    • R. Chartrand andW. Yin, "Iteratively reweighted algorithms for compressive sensing," in Proc. IEEE ICASSP, 2008, pp. 3869-3872.
    • (2008) Proc. IEEE ICASSP , pp. 3869-3872
    • Chartrand, R.1    Yin, W.2
  • 16
    • 79952038958 scopus 로고    scopus 로고
    • Estimation of the discrete spectrum of relaxations for electromagnetic induction responses using-pregularized least squares for 0 ≤ p ≤ 1
    • Mar
    • M.-H. Wei, J. H. McClellan, and W. R. Scott, "Estimation of the discrete spectrum of relaxations for electromagnetic induction responses using-pregularized least squares for 0 ≤ p ≤ 1," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 233-237, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 233-237
    • Wei, M.-H.1    McClellan, J.H.2    Scott, W.R.3
  • 17
    • 77949704355 scopus 로고    scopus 로고
    • Iteratively reweighted least squares minimization for sparse recovery
    • Jan
    • I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, "Iteratively reweighted least squares minimization for sparse recovery," Commun. Pure Appl. Math., vol. 63, no. 1, pp. 1-38, Jan. 2010.
    • (2010) Commun. Pure Appl. Math. , vol.63 , Issue.1 , pp. 1-38
    • Daubechies, I.1    Devore, R.2    Fornasier, M.3    Güntürk, C.S.4
  • 18
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted -1 minimization
    • Dec
    • J. Candès, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted -1 minimization," J. Fourier Anal. Appl., vol. 14, no. 5, pp. 877-905, Dec. 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5 , pp. 877-905
    • Candès, J.1    Wakin, M.B.2    Boyd, S.P.3
  • 20
    • 0004236492 scopus 로고    scopus 로고
    • (3rd Edition). Baltimore, MD: The Johns Hopkins Univ. Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Edition). Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 21
    • 84879988826 scopus 로고    scopus 로고
    • [Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.