메뉴 건너뛰기




Volumn 52, Issue 6, 2014, Pages 3256-3274

Subspace matching pursuit for sparse unmixing of hyperspectral data

Author keywords

Dictionary pruning; greedy algorithm (GA); hyperspectral unmixing; multiple measurement vector (MMV); simultaneous sparse representation; sparse unmixing; Subspace matching pursuit (SMP)

Indexed keywords

GENETIC ALGORITHMS; RELAXATION PROCESSES; SPECTROSCOPY; VECTORS;

EID: 84896397988     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2272076     Document Type: Article
Times cited : (108)

References (56)
  • 1
    • 4143076953 scopus 로고    scopus 로고
    • Why use hyperspectral imagery
    • Apr
    • P. Shippert, "Why use hyperspectral imagery" Photogramm. Eng. RemoteSens., vol. 70, no. 4, pp. 377-380, Apr. 2004.
    • (2004) Photogramm. Eng RemoteSens. , vol.70 , Issue.4 , pp. 377-380
    • Shippert, P.1
  • 2
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process.Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process.Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 4
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing ofsingle pixels
    • Jan
    • M. Petrou and P. G. Foschi, "Confidence in linear spectral unmixing ofsingle pixels," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 624-626, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.G.2
  • 7
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convexgeometry concepts
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convexgeometry concepts," in Proc. Summaries 4th Annu. JPL AirborneGeosci. Workshop, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Annu. JPL AirborneGeosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 8
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectraldata
    • Vancouver, BC, Canada Apr
    • M. Winter, "Fast autonomous spectral end-member determination in hyperspectraldata," in Proc. 13th Int. Conf. Appl. Geologic Remote Sens.,Vancouver, BC, Canada, Apr. 1999, vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. Appl. Geologic Remote Sens , vol.2 , pp. 337-344
    • Winter, M.1
  • 9
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J.M. Nascimento and J.M. Bioucas-Dias, "Vertex component analysis: Afast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. RemoteSens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 10
    • 84887415911 scopus 로고    scopus 로고
    • A new growingmethod for simplex-based endmember extraction algorithm
    • Oct
    • C.-I. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, "A new growingmethod for simplex-based endmember extraction algorithm," IEEE Trans.Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans.Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.3    Ouyang, Y.-C.4
  • 11
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data,"IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data usingminimum volume constrained nonnegative matrix factorization," IEEETrans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 14
    • 70350488509 scopus 로고    scopus 로고
    • Convex analysis based minimumvolumeenclosing simplex algorithm for hyperspectral unmixing
    • Nov
    • T. Chan, C. Chi, Y. Huang, andW.Ma, "Convex analysis based minimumvolumeenclosing simplex algorithm for hyperspectral unmixing," IEEETrans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEETrans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 15
    • 77950919715 scopus 로고    scopus 로고
    • Bayesian nonnegative matrixfactorization with volume prior for unmixing of hyperspectral images," inProc
    • Sep
    • M. Arngren, M. N. Schmidt, and J. larsen, "Bayesian nonnegative matrixfactorization with volume prior for unmixing of hyperspectral images," inProc. IEEE Int. Workshop MLSP, Sep. 2009, pp. 1-6.
    • (2009) IEEE Int. Workshop MLSP , pp. 1-6
    • Arngren, M.1    Schmidt, M.N.2    Larsen, J.3
  • 16
    • 82355182723 scopus 로고    scopus 로고
    • Hyperspectral unmixing algorithmvia dependent component analysis
    • Jul
    • J. Nascimento and J. Bioucas-Dias, "Hyperspectral unmixing algorithmvia dependent component analysis," in Proc. IEEE IGARSS, Jul. 2007,pp. 4033-4036.
    • (2007) Proc. IEEE IGARSS , pp. 4033-4036
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegativematrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegativematrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. Paul Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorizationfor spectral data analysis," Linear Algebra Appl., vol. 416, no. 1,pp. 29-47, Jul. 2006. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 20
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrixfactorization
    • Apr
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrixfactorization," Adv. Neural Inf. Process. Syst., vol. 13, pp. 556-562,Apr. 2001.
    • (2001) Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 80455174031 scopus 로고    scopus 로고
    • L1/2 Sparsity constrainednonnegative matrix factorization for hyperspectral unmixing
    • Nov
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "L1/2 Sparsity constrainednonnegative matrix factorization for hyperspectral unmixing,"IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297,Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 22
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization forhyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization forhyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47,no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 23
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparseNMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparseNMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens.,vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 24
    • 79960926086 scopus 로고    scopus 로고
    • A quantitativeanalysis of virtual endmembers increased impact on the collinearity effectin spectral unmixing
    • Aug
    • X. Chen, J. Chen, X. Jia, B. Somers, J.Wu, and P. Coppin, "A quantitativeanalysis of virtual endmembers increased impact on the collinearity effectin spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8,pp. 2945-2956, Aug. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.8 , pp. 2945-2956
    • Chen, X.1    Chen, J.2    Jia, X.3    Somers, B.4    Wu, J.5    Coppin, P.6
  • 26
    • 84855912794 scopus 로고    scopus 로고
    • A novelhierarchical Bayesian approach for sparse semisupervised hyperspectralunmixing
    • Feb
    • K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "A novelhierarchical Bayesian approach for sparse semisupervised hyperspectralunmixing," IEEE Trans. Signal Process., vol. 60, no. 2, pp. 585-599,Feb. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.2 , pp. 585-599
    • Themelis, K.E.1    Rontogiannis, A.A.2    Koutroumbas, K.D.3
  • 27
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classificationusing dictionary-based sparse representation
    • Oct
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classificationusing dictionary-based sparse representation," IEEE Trans. Geosci.Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci.Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 28
    • 84880280725 scopus 로고    scopus 로고
    • Deblurring andsparse unmixing for hyperspectral images
    • Jul
    • X. Zhao, F. Wang, T. Huang, M. Ng, and R. Plemmons, "Deblurring andsparse unmixing for hyperspectral images," IEEE Trans. Geosci. RemoteSens., vol. 51, no. 7, pp. 4045-4058, Jul. 2013.
    • (2013) IEEE Trans. Geosci. RemoteSens. , vol.51 , Issue.7 , pp. 4045-4058
    • Zhao, X.1    Wang, F.2    Huang, T.3    Ng, M.4    Plemmons, R.5
  • 29
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatialregularization for sparse hyperspectral unmixing
    • Nov
    • M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, "Total variation spatialregularization for sparse hyperspectral unmixing," IEEE Trans. Geosci.Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci.Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.2    Plaza, A.3
  • 32
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparserecovery using convex relaxation
    • Jan
    • Y. C. Eldar and H. Rauhut, "Average case analysis of multichannel sparserecovery using convex relaxation," IEEE Trans. Inf. Theory, vol. 56, no. 1,pp. 505-519, Jan. 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.C.1    Rauhut, H.2
  • 33
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Oct
    • J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation,"IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242,Oct. 2004.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 34
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • DOI 10.1109/TSP.2007.914345
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans.Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 37
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonalmatching pursuit
    • Dec
    • J. A. Tropp, "Signal recovery from random measurements via orthogonalmatching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1
  • 38
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness ofnonnegative sparse solutions to underdetermined systems of equations
    • Nov
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness ofnonnegative sparse solutions to underdetermined systems of equations,"IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 39
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basispursuit
    • S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basispursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001.
    • (2001) SIAM Rev. , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 40
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso,"J. R. Stat. Soc., vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. R. Stat. Soc , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 41
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • DOI 10.1109/36.841987
    • C. A. Bateson, G. P. Asner, and C. A. Wessman, "Endmember bundles:A new approach to incorporating endmember variability into spectralmixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2,pp. 1083-1094, Mar. 2000. (Pubitemid 30594771)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.II2 , pp. 1083-1094
    • Ann Bateson, C.1    Asner, G.P.2    Wessman, C.A.3
  • 42
    • 78649271874 scopus 로고    scopus 로고
    • Alternating direction algorithmsfor constrained sparse regression: Application to hyperspectralunmixing
    • Jun
    • J. M. Bioucas-Dias and M. A. T. Figueiredo, "Alternating direction algorithmsfor constrained sparse regression: Application to hyperspectralunmixing," in Proc. 2nd WHISPERS, Jun. 2010, pp. 1-4.
    • (2010) Proc. 2nd WHISPERS , pp. 1-4
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.T.2
  • 43
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • J. A. Tropp, A. C. Gilbert, andM. J. Strauss, "Algorithms for simultaneoussparse approximation: Part I: Greedy pursuit," Signal Process., vol. 86,no. 3, pp. 572-588, Mar. 2006. (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 44
    • 33947142837 scopus 로고    scopus 로고
    • Theoretical results on sparse representations of multiple-measurement vectors
    • DOI 10.1109/TSP.2006.881263
    • J. Chen and X. Huo, "Theoretical results on sparse representations ofmultiple-measurement vectors," IEEE Trans. Signal Process., vol. 54,no. 12, pp. 4634-4643, Dec. 2006. (Pubitemid 46405606)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.12 , pp. 4634-4643
    • Chen, J.1    Huo, X.2
  • 46
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensingsignal reconstruction
    • May
    • W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensingsignal reconstruction," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 47
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incompleteand inaccurate samples
    • May
    • D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incompleteand inaccurate samples," Appl. Comput. Harmon. Anal., vol. 26,no. 3, pp. 301-321, May 2009.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 49
    • 84896403682 scopus 로고    scopus 로고
    • [Online] Available
    • Online]. Available:http://arxiv.org/abs/1208.0353
  • 50
  • 51
    • 0037418225 scopus 로고    scopus 로고
    • Maximal sparsity representation via l1 minimization
    • Mar
    • D. L. Donoho and M. Elad, "Maximal sparsity representation via l1 minimization,"Proc. Natl. Acad. Sci., vol. 100, pp. 2197-2202, Mar. 2003.
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , pp. 2197-2202
    • Donoho, D.L.1    Elad, M.2
  • 53
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparativeanalysis of endmember extraction algorithms from hyperspectraldata
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparativeanalysis of endmember extraction algorithms from hyperspectraldata, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663,Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 54
    • 0000113362 scopus 로고
    • The U.S. Geological survey digital spectral library:version 1: 0.2 to 3.0 microns
    • U.S. Geological Survey, Denver, CO,USA
    • R. N. Clark, G. A. Swayze, A. J. Gallagher, T. V. V. King, andW. M. Calvin, "The U.S. Geological Survey Digital Spectral Library:Version 1: 0.2 to 3.0 Microns," U.S. Geological Survey, Denver, CO,USA, pp. 93-592, 1993, Open File Rep.
    • (1993) Open File Rep , pp. 93-592
    • Clark, R.N.1    Swayze, G.A.2    Gallagher, T.A.J.3    King, V.V.4    Calvin, W.M.5
  • 55
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signalsources in hyperspectral imagery
    • Mar
    • C. Chang and Q. Du, "Estimation of number of spectrally distinct signalsources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens.,vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.