메뉴 건너뛰기




Volumn 51, Issue 8, 2012, Pages

Nonnegative matrix factorization for hyperspectral unmixing using prior knowledge of spectral signatures

Author keywords

Hyperspectral unmixing; Nonnegative matrix factorization; Prior knowledge; Spectral signatures

Indexed keywords

CONSTITUENT MATERIALS; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL UNMIXING; LINEAR SPECTRAL MIXTURE MODEL; NONNEGATIVE MATRIX FACTORIZATION; PRIOR KNOWLEDGE; SPECTRAL SIGNATURE; SYNTHETIC AND REAL DATA;

EID: 84891821269     PISSN: 00913286     EISSN: 15602303     Source Type: Journal    
DOI: 10.1117/1.OE.51.8.087001     Document Type: Article
Times cited : (30)

References (36)
  • 1
    • 84255198685 scopus 로고    scopus 로고
    • Measuring the earth from above: 30 years (and counting) of hyperspectral imaging
    • Alexander F. H. Goetz, "Measuring the earth from above: 30 years (and counting) of hyperspectral imaging," Photon. Spectra 45(6), 42-47 (2011).
    • (2011) Photon. Spectra , vol.45 , Issue.6 , pp. 42-47
    • Goetz, A.F.H.1
  • 2
    • 80955131954 scopus 로고    scopus 로고
    • An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches
    • Institute of Electrical and Electronics Engineers Inc., Vancouver, BC, Canada
    • J. M. Bioucas-Dias and Antonio Plaza, "An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches," in International Geoscience and Remote Sensing Symp. (IGARSS), pp. 1135-1138, Institute of Electrical and Electronics Engineers Inc., Vancouver, BC, Canada (2011).
    • (2011) International Geoscience and Remote Sensing Symp. (IGARSS) , pp. 1135-1138
    • Bioucas-Dias, J.M.1    Plaza, A.2
  • 4
    • 80455141702 scopus 로고    scopus 로고
    • Hyperspectral image fusion by the similarity measure based variational method
    • Zhenwei Shi, Zhenyu An, and Zhiguo Jiang, "Hyperspectral image fusion by the similarity measure based variational method," Opt. Eng. 50(7), 077006 (2011).
    • (2011) Opt. Eng. , vol.50 , Issue.7 , pp. 077006
    • Shi, Z.1    An, Z.2    Jiang, Z.3
  • 5
    • 79955670118 scopus 로고    scopus 로고
    • Hyperspectral target detection using regularized high-order matched filter
    • Zhenwei Shi, Shuo Yang, and Zhiguo Jiang, "Hyperspectral target detection using regularized high-order matched filter," Opt. Eng. 50(5), 057201 (2011).
    • (2011) Opt. Eng. , vol.50 , Issue.5 , pp. 057201
    • Shi, Z.1    Yang, S.2    Jiang, Z.3
  • 7
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • Maria Petrou and Patricia G. Foschi, "Confidence in linear spectral unmixing of single pixels," IEEE Trans. Geosci. Rem. Sens. 37(1), 624-626 (1999).
    • (1999) IEEE Trans. Geosci. Rem. Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.G.2
  • 10
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • Washington, D.C.
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summ. 4th Annu. JPL Airborne Geoscience Workshop, Washington, D.C., Vol. 1, pp. 11-14 (1993).
    • (1993) Proc. Summ. 4th Annu. JPL Airborne Geoscience Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 11
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," Proc. SPIE 3753, 266-275 (1999).
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 12
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: a fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Rem. Sens. 43(4), 898-910 (2005). (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 14
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. H. Chan et al., "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process. 57(11), 4418-4432 (2009).
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.H.1
  • 15
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • Institute of Electrical and Electronics Engineers Inc., Boston, MA
    • J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data," in IEEE Geoscience and Remote Sensing Symposium-IGARSS08, Vol. 3, pp. 250-253, Institute of Electrical and Electronics Engineers Inc., Boston, MA (2008).
    • (2008) IEEE Geoscience and Remote Sensing Symposium-IGARSS08 , vol.3 , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.2
  • 16
    • 7044222060 scopus 로고    scopus 로고
    • ICE: A statistical approach to identifying endmembers in hyperspectral images
    • M. Berman et al., "ICE: a statistical approach to identifying endmembers in hyperspectral images," IEEE Trans. Geosci. Rem. Sens. 42(10), 2085-2095 (2004).
    • (2004) IEEE Trans. Geosci. Rem. Sens. , vol.42 , Issue.10 , pp. 2085-2095
    • Berman, M.1
  • 17
    • 84855445002 scopus 로고    scopus 로고
    • A new maximum simplex volume method based on householder transformation for endmember extraction
    • Junmin Liu and Jiangshe Zhang, "A new maximum simplex volume method based on householder transformation for endmember extraction," IEEE Trans. Geosci. Rem. Sens. 50(1), 104-108 (2012).
    • (2012) IEEE Trans. Geosci. Rem. Sens. , vol.50 , Issue.1 , pp. 104-108
    • Liu, J.1    Zhang, J.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature 401(6755), 788-791 (1999).
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. Paul Pauca, J. Piper, and Robert J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Lin. Algebra Appl. 416(1), 29-47 (2006). (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 20
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization,"Adv. Neural Inform. Process. Syst. 13, 556-562 (2001).
    • (2001) Adv. Neural Inform. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 0028980239 scopus 로고
    • Classification of multispectral images based on fractions of endmembers: Application to land-Cover change in the Brazilian Amazon
    • J. B. Adams et al., "Classification of multispectral images based on fractions of endmembers: application to land-cover change in the brazilian amazon," Remote Sens. Environ. 52(2), 137-154 (1995). (Pubitemid 26438386)
    • (1995) Remote Sensing of Environment , vol.52 , Issue.2 , pp. 137-154
    • Adams, J.B.1
  • 23
    • 0347213857 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the
    • USGS tetracorder and expert systems
    • R. N. Clark et al., "Imaging spectroscopy: earth and planetary remote sensing with the USGS tetracorder and expert systems," J. Geophys. Res. 108(E12), 5-1-5-44 (2003).
    • (2003) J. Geophys. Res. , vol.108 E , Issue.12 , pp. 51-544
    • Clark, R.N.1
  • 26
    • 78049389995 scopus 로고    scopus 로고
    • Blind rhythmic source separation: Nonnegativity and repeatability
    • Institute of Electrical and Electronics Engineers Inc., Dallas, TX
    • Minje Kim et al., "Blind rhythmic source separation: nonnegativity and repeatability," in IEEE International Conf. on Acoustics Speech and Signal Processing (ICASSP), pp. 2006-2009, Institute of Electrical and Electronics Engineers Inc., Dallas, TX (2010).
    • (2010) IEEE International Conf. on Acoustics Speech and Signal Processing (ICASSP) , pp. 2006-2009
    • Kim, M.1
  • 27
    • 78049406744 scopus 로고    scopus 로고
    • Nonnegative matrix partial co-factorization for drum source separation
    • Institute of Electrical and Electronics Engineers Inc., Dallas, TX
    • Jiho Yoo et al., "Nonnegative matrix partial co-factorization for drum source separation," in IEEE International Conf. on Acoustics Speech and Signal Processing (ICASSP), pp. 1942-1945, Institute of Electrical and Electronics Engineers Inc., Dallas, TX (2010).
    • (2010) IEEE International Conf. on Acoustics Speech and Signal Processing (ICASSP) , pp. 1942-1945
    • Yoo, J.1
  • 29
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • A. Plaza et al., "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Rem. Sens. 42(3), 650-663 (2004).
    • (2004) IEEE Trans. Geosci. Rem. Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1
  • 30
    • 0003751241 scopus 로고
    • The US geological survey digital spectral library: Version 1: 0.2 to 3.0 microns
    • R. N. Clark et al., "The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns," U.S. Geological Survey Open File Report 93-592, p. 1340 (1993).
    • (1993) U.S. Geological Survey Open File Report 93-592 , pp. 1340
    • Clark, R.N.1
  • 31
    • 80455142977 scopus 로고    scopus 로고
    • AVIRIS Data Products. [Online]. Available: http://aviris.jpl.nasa.gov/ html/aviris.freedata.html.
    • AVIRIS Data Products
  • 32
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Rem. Sens. 45(3), 765-777 (2007). (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 33
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. -H. Chan et al., "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process. 57(11), 4418-4432 (2009).
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1
  • 35
    • 80455174036 scopus 로고    scopus 로고
    • Chance-constrained robust minimum- volume enclosing simplex algorithm for hyperspectral unmixing
    • ArulMurugan Ambikapathi et al., "Chance-constrained robust minimum- volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Geosci. Rem. Sens. 49(11), 4194-4209 (2011).
    • (2011) IEEE Trans. Geosci. Rem. Sens. , vol.49 , Issue.11 , pp. 4194-4209
    • Ambikapathi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.