-
1
-
-
64549159496
-
Consistency of the group Lasso and multiple kernel learning
-
Ecole Normale Supérieure
-
F. Bach. Consistency of the group Lasso and multiple kernel learning. Technical report, INRIA -Département d'Informatique, Ecole Normale Supérieure, 2008.
-
(2008)
Technical Report, INRIA -Département D'Informatique
-
-
Bach, F.1
-
2
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
Morgan Kaufmann
-
F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proc. Int. Conf. Machine Learning (ICML). Morgan Kaufmann, 2004.
-
(2004)
Proc. Int. Conf. Machine Learning (ICML)
-
-
Bach, F.1
Lanckriet, G.2
Jordan, M.3
-
3
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presence of noise
-
6-18, January
-
D. Donoho, M. Elad, and V. M. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Info Theory, 52(1):6-18, January 2006.
-
(2006)
IEEE Trans. Info Theory
, vol.52
, Issue.1
-
-
Donoho, D.1
Elad, M.2
Temlyakov, V.M.3
-
4
-
-
79952714417
-
-
Technical Report arXiv:0802.1517v1, Carnegie Mellon University
-
q regularized regression. Technical Report arXiv:0802.1517v1, Carnegie Mellon University, 2008.
-
(2008)
q Regularized Regression
-
-
Liu, H.1
Zhang, J.2
-
6
-
-
77949526376
-
On the asymptotic properties of the group lasso estimator for linear models
-
Y. Nardi and A. Rinaldo. On the asymptotic properties of the group lasso estimator for linear models. Electronic Journal of Statistics, 2:605-633, 2008.
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 605-633
-
-
Nardi, Y.1
Rinaldo, A.2
-
7
-
-
70049105714
-
Joint covariate selection and joint subspace selection for multiple classification problems
-
To appear
-
G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 2009. To appear.
-
(2009)
Statistics and Computing
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
9
-
-
85030144707
-
SpAM: Sparse additive models
-
Vancouver, Canada, December
-
P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. SpAM: sparse additive models. In Neural Info. Proc. Systems (NIPS) 21, Vancouver, Canada, December 2007.
-
(2007)
Neural Info. Proc. Systems (NIPS)
, vol.21
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
10
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
DOI 10.1109/TIT.2005.864420
-
J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Info Theory, 52(3):1030-1051, March 2006. (Pubitemid 46444890)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
12
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society B, 1(68):4967, 2006.
-
(2006)
Journal of the Royal Statistical Society B
, vol.1
, Issue.68
, pp. 4967
-
-
Yuan, M.1
Lin, Y.2
-
13
-
-
34447335946
-
Grouped and hierarchical model selection through composite absolute penalties
-
UC Berkeley
-
P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Technical report, Statistics Department, UC Berkeley, 2007.
-
(2007)
Technical Report, Statistics Department
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
|