메뉴 건너뛰기




Volumn 25, Issue 23, 2011, Pages 2525-2539

The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein

Author keywords

Cyc8 Tup1; Gene regulation; Stress responses transcriptional activation; Transcriptional corepressor; Transcriptional repression

Indexed keywords

COREPRESSOR PROTEIN; NUCLEOSOME ANTIBODY;

EID: 82955217673     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.179275.111     Document Type: Article
Times cited : (110)

References (75)
  • 1
    • 84891703149 scopus 로고    scopus 로고
    • Activator control of nucleosome occupancy in activation and repression of transcription
    • Bryant GO, Prabhu V, Floer M, Wang X, Spagna D, Schreiber D, Ptashne M. 2008. Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol 6: 2928-2939.
    • (2008) PLoS Biol , vol.6 , pp. 2928-2939
    • Bryant, G.O.1    Prabhu, V.2    Floer, M.3    Wang, X.4    Spagna, D.5    Schreiber, D.6    Ptashne, M.7
  • 2
    • 33646923128 scopus 로고    scopus 로고
    • Tethering RITS to a nascent transcript initiates RNAi-and heterochromatindependent gene silencing
    • Buhler M, Verdel A, Moazed D. 2006. Tethering RITS to a nascent transcript initiates RNAi-and heterochromatindependent gene silencing. Cell 125: 873-886.
    • (2006) Cell , vol.125 , pp. 873-886
    • Buhler, M.1    Verdel, A.2    Moazed, D.3
  • 3
    • 0028264386 scopus 로고
    • The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure
    • Cooper JP, Roth SY, Simpson RT. 1994. The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev 8: 1400-1410.
    • (1994) Genes Dev , vol.8 , pp. 1400-1410
    • Cooper, J.P.1    Roth, S.Y.2    Simpson, R.T.3
  • 4
    • 0348010365 scopus 로고    scopus 로고
    • Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo
    • Davie JK, Edmondson DG, Coco CB, Dent SY. 2003. Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278: 50158-50162.
    • (2003) J Biol Chem , vol.278 , pp. 50158-50162
    • Davie, J.K.1    Edmondson, D.G.2    Coco, C.B.3    Dent, S.Y.4
  • 5
    • 77953462766 scopus 로고    scopus 로고
    • Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast
    • Desimone AM, Laney JD. 2010. Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast. Mol Cell Biol 30: 3342-3356.
    • (2010) Mol Cell Biol , vol.30 , pp. 3342-3356
    • Desimone, A.M.1    Laney, J.D.2
  • 6
    • 28844506010 scopus 로고    scopus 로고
    • Heat-inducible degron and the making of conditional mutants
    • Dohmen RJ, Varshavsky A. 2005. Heat-inducible degron and the making of conditional mutants. Methods Enzymol 399: 799-822.
    • (2005) Methods Enzymol , vol.399 , pp. 799-822
    • Dohmen, R.J.1    Varshavsky, A.2
  • 7
    • 0034142029 scopus 로고    scopus 로고
    • The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains twomolecules of the corepressor Tup1p per nucleosome
    • Ducker CE, Simpson RT. 2000. The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains twomolecules of the corepressor Tup1p per nucleosome. EMBO J 19: 400-409.
    • (2000) EMBO J , vol.19 , pp. 400-409
    • Ducker, C.E.1    Simpson, R.T.2
  • 8
    • 0030003051 scopus 로고    scopus 로고
    • Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4
    • Edmondson DG, Smith MM, Roth SY. 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 10: 1247-1259.
    • (1996) Genes Dev , vol.10 , pp. 1247-1259
    • Edmondson, D.G.1    Smith, M.M.2    Roth, S.Y.3
  • 9
    • 56049105378 scopus 로고    scopus 로고
    • Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments
    • doi: 10.1093/nar/gkn535
    • Fan X, Lamarre-Vincent N, Wang Q, Struhl K. 2008. Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments. Nucleic Acids Res 36: e125. doi: 10.1093/nar/gkn535.
    • (2008) Nucleic Acids Res , vol.36
    • Fan, X.1    Lamarre-Vincent, N.2    Wang, Q.3    Struhl, K.4
  • 10
    • 79953282238 scopus 로고    scopus 로고
    • Conditional depletion of nuclear proteins by the anchor away system
    • doi:10.1002/0471142727.mb1310bs93
    • Fan X, Geisberg JV, Wong KH, Jin Y. 2011. Conditional depletion of nuclear proteins by the anchor away system. Curr Protoc Mol Biol 93: 1310B1-1310B8. doi:10.1002/0471142727.mb1310bs93.
    • (2011) Curr Protoc Mol Biol , vol.93
    • Fan, X.1    Geisberg, J.V.2    Wong, K.H.3    Jin, Y.4
  • 11
    • 0035903574 scopus 로고    scopus 로고
    • Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation
    • Fleming AB, Pennings S. 2001. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J 20: 5219-5231.
    • (2001) EMBO J , vol.20 , pp. 5219-5231
    • Fleming, A.B.1    Pennings, S.2
  • 12
    • 34548771746 scopus 로고    scopus 로고
    • Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene
    • Fleming AB, Pennings S. 2007. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene. Nucleic Acids Res 35: 5520-5531.
    • (2007) Nucleic Acids Res , vol.35 , pp. 5520-5531
    • Fleming, A.B.1    Pennings, S.2
  • 13
    • 1542290663 scopus 로고    scopus 로고
    • Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation
    • Fragiadakis GS, Tzamarias D, Alexandraki D. 2004. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23: 333-342.
    • (2004) EMBO J , vol.23 , pp. 333-342
    • Fragiadakis, G.S.1    Tzamarias, D.2    Alexandraki, D.3
  • 14
    • 0034074199 scopus 로고    scopus 로고
    • Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon-source utilization but not the response to stress
    • Garcia-Gimeno MA, Struhl K. 2000. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon-source utilization but not the response to stress. Mol Cell Biol 20: 4340-4349.
    • (2000) Mol Cell Biol , vol.20 , pp. 4340-4349
    • Garcia-Gimeno, M.A.1    Struhl, K.2
  • 15
    • 0034332501 scopus 로고    scopus 로고
    • Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene
    • Gavin IM, Kladde MP, Simpson RT. 2000. Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene. EMBO J 19: 5875-5883.
    • (2000) EMBO J , vol.19 , pp. 5875-5883
    • Gavin, I.M.1    Kladde, M.P.2    Simpson, R.T.3
  • 16
    • 0033961273 scopus 로고    scopus 로고
    • TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo
    • Geisberg JV, Struhl K. 2000. TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 20: 1478-1488.
    • (2000) Mol Cell Biol , vol.20 , pp. 1478-1488
    • Geisberg, J.V.1    Struhl, K.2
  • 17
    • 34347342814 scopus 로고    scopus 로고
    • The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation
    • Gligoris T, Thireos G, Tzamarias D. 2007. The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation. Mol Cell Biol 27: 4198-4205.
    • (2007) Mol Cell Biol , vol.27 , pp. 4198-4205
    • Gligoris, T.1    Thireos, G.2    Tzamarias, D.3
  • 18
    • 4344672753 scopus 로고    scopus 로고
    • Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae
    • Green SR, Johnson AD. 2004. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol Biol Cell 15: 4191-4202.
    • (2004) Mol Biol Cell , vol.15 , pp. 4191-4202
    • Green, S.R.1    Johnson, A.D.2
  • 19
    • 19644377369 scopus 로고    scopus 로고
    • Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1
    • Green SR, Johnson AD. 2005. Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1. Mol Biol Cell 16: 2605-2613.
    • (2005) Mol Biol Cell , vol.16 , pp. 2605-2613
    • Green, S.R.1    Johnson, A.D.2
  • 20
    • 34249304470 scopus 로고    scopus 로고
    • Transcription and RNA interference in the formation of heterochromatin
    • Grewal SI, Elgin SC. 2007. Transcription and RNA interference in the formation of heterochromatin. Nature 447: 399-406.
    • (2007) Nature , vol.447 , pp. 399-406
    • Grewal, S.I.1    Elgin, S.C.2
  • 21
    • 33845755946 scopus 로고    scopus 로고
    • Heterochromatin revisited
    • Grewal SI, Jia S. 2007. Heterochromatin revisited. Natl Rev 8: 35-46.
    • (2007) Natl Rev , vol.8 , pp. 35-46
    • Grewal, S.I.1    Jia, S.2
  • 22
    • 0034672065 scopus 로고    scopus 로고
    • Srb7p is a physical and physiological target of Tup1p
    • Gromoller A, Lehming N. 2000. Srb7p is a physical and physiological target of Tup1p. EMBO J 19: 6845-6852.
    • (2000) EMBO J , vol.19 , pp. 6845-6852
    • Gromoller, A.1    Lehming, N.2
  • 23
    • 0035813169 scopus 로고    scopus 로고
    • Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes
    • Han SJ, Lee JS, Kang JS, Kim YJ. 2001. Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes. J Biol Chem 276: 37020-37026.
    • (2001) J Biol Chem , vol.276 , pp. 37020-37026
    • Han, S.J.1    Lee, J.S.2    Kang, J.S.3    Kim, Y.J.4
  • 24
    • 52049084405 scopus 로고    scopus 로고
    • The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes
    • Haruki H, Nishikawa J, Laemmli UK. 2008. The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes. Mol Cell 31: 925-932.
    • (2008) Mol Cell , vol.31 , pp. 925-932
    • Haruki, H.1    Nishikawa, J.2    Laemmli, U.K.3
  • 25
    • 35648957173 scopus 로고    scopus 로고
    • Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor
    • Hickman MJ, Winston F. 2007. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27: 7414-7424.
    • (2007) Mol Cell Biol , vol.27 , pp. 7414-7424
    • Hickman, M.J.1    Winston, F.2
  • 26
    • 0022981167 scopus 로고
    • Saturation mutagenesis of the yeast HIS3 regulatory site: Requirements for transcriptional induction and for binding by GCN4 activator protein
    • Hill DE, Hope IA, Macke JP, Struhl K. 1986. Saturation mutagenesis of the yeast HIS3 regulatory site: Requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234: 451-457.
    • (1986) Science , vol.234 , pp. 451-457
    • Hill, D.E.1    Hope, I.A.2    Macke, J.P.3    Struhl, K.4
  • 27
    • 0027068143 scopus 로고
    • Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
    • Hirschhorn JN, Brown SA, Clark CD, Winston F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6: 2288-2298.
    • (1992) Genes Dev , vol.6 , pp. 2288-2298
    • Hirschhorn, J.N.1    Brown, S.A.2    Clark, C.D.3    Winston, F.4
  • 28
    • 0029737867 scopus 로고    scopus 로고
    • Dimeric ligands define a role for transcriptional activation domains in reinitiation
    • Ho S, Biggar SR, Spencer DM, Schreiber SL, Crabtree GR. 1996. Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 382: 822-826.
    • (1996) Nature , vol.382 , pp. 822-826
    • Ho, S.1    Biggar, S.R.2    Spencer, D.M.3    Schreiber, S.L.4    Crabtree, G.R.5
  • 29
    • 0030613542 scopus 로고    scopus 로고
    • Amino termini of histones H3 and H4 are required for a1-a2 repression in yeast
    • Huang L, Zhang W, Roth SY. 1997. Amino termini of histones H3 and H4 are required for a1-a2 repression in yeast. Mol Cell Biol 17: 6555-6562.
    • (1997) Mol Cell Biol , vol.17 , pp. 6555-6562
    • Huang, L.1    Zhang, W.2    Roth, S.Y.3
  • 30
    • 70350457498 scopus 로고    scopus 로고
    • Gene activation by dissociation of an inhibitor from a transcriptional activation domain
    • Jiang F, Frey BR, Evans ML, Friel JC, Hopper JE. 2009. Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 29: 5604-5610.
    • (2009) Mol Cell Biol , vol.29 , pp. 5604-5610
    • Jiang, F.1    Frey, B.R.2    Evans, M.L.3    Friel, J.C.4    Hopper, J.E.5
  • 31
    • 0037087576 scopus 로고    scopus 로고
    • Dynamics of global histone acetylation and deacetylation in vivo: Rapid restoration of normal histone acetylation status upon removal of activators and repressors
    • Katan-Khaykovich Y, Struhl K. 2002. Dynamics of global histone acetylation and deacetylation in vivo: Rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev 16: 743-752.
    • (2002) Genes Dev , vol.16 , pp. 743-752
    • Katan-Khaykovich, Y.1    Struhl, K.2
  • 33
    • 28544433392 scopus 로고    scopus 로고
    • Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo
    • Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG. 2005. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 25: 11171-11183.
    • (2005) Mol Cell Biol , vol.25 , pp. 11171-11183
    • Kim, S.J.1    Swanson, M.J.2    Qiu, H.3    Govind, C.K.4    Hinnebusch, A.G.5
  • 35
    • 0028034201 scopus 로고
    • The WD repeats of Tup1 interact with the homeo domain protein a2
    • Komachi K, Redd MJ, Johnson AD. 1994. The WD repeats of Tup1 interact with the homeo domain protein a2. Genes Dev 8: 2857-2867.
    • (1994) Genes Dev , vol.8 , pp. 2857-2867
    • Komachi, K.1    Redd, M.J.2    Johnson, A.D.3
  • 36
    • 0031886049 scopus 로고    scopus 로고
    • Functional relationships of Srb10- Srb11 kinase, carboxy-terminal domain kinase CTDK-1, and transcriptional corepressor Ssn6-Tup1
    • Kuchin S, Carlson M. 1998. Functional relationships of Srb10- Srb11 kinase, carboxy-terminal domain kinase CTDK-1, and transcriptional corepressor Ssn6-Tup1. Mol Cell Biol 18: 1163-1171.
    • (1998) Mol Cell Biol , vol.18 , pp. 1163-1171
    • Kuchin, S.1    Carlson, M.2
  • 38
    • 0033542436 scopus 로고    scopus 로고
    • Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme
    • Kuras L, Struhl K. 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399: 609-612.
    • (1999) Nature , vol.399 , pp. 609-612
    • Kuras, L.1    Struhl, K.2
  • 39
    • 0033886103 scopus 로고    scopus 로고
    • Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8- Tup1 corepressor
    • Lee M, Chatterjee S, Struhl K. 2000. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8- Tup1 corepressor. Genetics 155: 1535-1542.
    • (2000) Genetics , vol.155 , pp. 1535-1542
    • Lee, M.1    Chatterjee, S.2    Struhl, K.3
  • 40
    • 0035823553 scopus 로고    scopus 로고
    • Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure of the upstream repression sequence
    • Li B, Reese JC. 2001. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure of the upstream repression sequence. J Biol Chem 276: 33788-33797.
    • (2001) J Biol Chem , vol.276 , pp. 33788-33797
    • Li, B.1    Reese, J.C.2
  • 41
  • 42
    • 33750684669 scopus 로고    scopus 로고
    • Transcriptional repression by Tup1- Ssn6
    • Malave TM, Dent SY. 2006. Transcriptional repression by Tup1- Ssn6. Biochem Cell Biol 84: 437-443.
    • (2006) Biochem Cell Biol , vol.84 , pp. 437-443
    • Malave, T.M.1    Dent, S.Y.2
  • 43
    • 0026505554 scopus 로고
    • Chromatin structure of the yeast SUC2 promoter in regulatory mutants
    • Matallana E, Franco L, Perez-Ortin JE. 1992. Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol Gen Genet 231: 395-400.
    • (1992) Mol Gen Genet , vol.231 , pp. 395-400
    • Matallana, E.1    Franco, L.2    Perez-Ortin, J.E.3
  • 44
    • 0346433724 scopus 로고    scopus 로고
    • Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
    • Mennella TA, Klinkenberg LG, Zitomer RS. 2003. Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein. Eukaryot Cell 2: 1288-1303.
    • (2003) Eukaryot Cell , vol.2 , pp. 1288-1303
    • Mennella, T.A.1    Klinkenberg, L.G.2    Zitomer, R.S.3
  • 45
    • 0029811986 scopus 로고    scopus 로고
    • TBPassociated factors are not generally required for transcriptional activation in yeast
    • Moqtaderi Z, Bai Y, Poon D, Weil PA, Struhl K. 1996. TBPassociated factors are not generally required for transcriptional activation in yeast. Nature 382: 188-191.
    • (1996) Nature , vol.382 , pp. 188-191
    • Moqtaderi, Z.1    Bai, Y.2    Poon, D.3    Weil, P.A.4    Struhl, K.5
  • 47
    • 77953644347 scopus 로고    scopus 로고
    • Reversal of histone methylation: Biochemical and molecular mechanisms of histone demethylases
    • Mosammaparast N, Shi Y. 2010. Reversal of histone methylation: Biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79: 155-179.
    • (2010) Annu Rev Biochem , vol.79 , pp. 155-179
    • Mosammaparast, N.1    Shi, Y.2
  • 48
    • 0024365536 scopus 로고
    • Defining sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: Analysis of the yeast GCN4 protein
    • Oliphant AR, Brandl CJ, Struhl K. 1989. Defining sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: Analysis of the yeast GCN4 protein. Mol Cell Biol 9: 2944-2949.
    • (1989) Mol Cell Biol , vol.9 , pp. 2944-2949
    • Oliphant, A.R.1    Brandl, C.J.2    Struhl, K.3
  • 50
    • 0036298418 scopus 로고    scopus 로고
    • Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1
    • Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D. 2002. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9: 1297-1305.
    • (2002) Mol Cell , vol.9 , pp. 1297-1305
    • Papamichos-Chronakis, M.1    Petrakis, T.2    Ktistaki, E.3    Topalidou, I.4    Tzamarias, D.5
  • 51
    • 2442486948 scopus 로고    scopus 로고
    • The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor
    • Papamichos-Chronakis M, Gligoris T, Tzamarias D. 2004. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5: 368-372.
    • (2004) EMBO Rep , vol.5 , pp. 368-372
    • Papamichos-Chronakis, M.1    Gligoris, T.2    Tzamarias, D.3
  • 52
    • 0036289351 scopus 로고    scopus 로고
    • Hog1 kinase converts the Sko1-Cyc8- Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress
    • Proft M, Struhl K. 2002. Hog1 kinase converts the Sko1-Cyc8- Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9: 1307-1317.
    • (2002) Mol Cell , vol.9 , pp. 1307-1317
    • Proft, M.1    Struhl, K.2
  • 53
    • 0029954323 scopus 로고    scopus 로고
    • Accessibility of a2- repressed promoters to the activator Gal4
    • Redd MJ, Stark MR, Johnson AD. 1996. Accessibility of a2- repressed promoters to the activator Gal4. Mol Cell Biol 16: 2865-2869.
    • (1996) Mol Cell Biol , vol.16 , pp. 2865-2869
    • Redd, M.J.1    Stark, M.R.2    Johnson, A.D.3
  • 54
    • 0034971791 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage
    • Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40: 1067-1083.
    • (2001) Mol Microbiol , vol.40 , pp. 1067-1083
    • Rep, M.1    Proft, M.2    Remize, F.3    Tamas, M.4    Serrano, R.5    Thevelein, J.M.6    Hohmann, S.7
  • 56
    • 80455124117 scopus 로고    scopus 로고
    • Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes
    • Rizzo JM, Mieczkowski PA, and Buck MJ. 2011. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes. Nucl Acids Res 39: 8803-8819.
    • (2011) Nucl Acids Res , vol.39 , pp. 8803-8819
    • Rizzo, J.M.1    Mieczkowski, P.A.2    Buck, M.J.3
  • 57
    • 0037123767 scopus 로고    scopus 로고
    • Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
    • Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M. 2002. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109: 437-446.
    • (2002) Cell , vol.109 , pp. 437-446
    • Robyr, D.1    Suka, Y.2    Xenarios, I.3    Kurdistani, S.K.4    Wang, A.5    Suka, N.6    Grunstein, M.7
  • 58
    • 33845799903 scopus 로고    scopus 로고
    • Polycomb silencing mechanisms and the management of genomic programmes
    • Schwartz YB, Pirrotta V. 2007. Polycomb silencing mechanisms and the management of genomic programmes. Natl Rev 8: 9-22.
    • (2007) Natl Rev , vol.8 , pp. 9-22
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 59
    • 70349469565 scopus 로고    scopus 로고
    • Mechanisms of polycomb gene silencing: Knowns and unknowns
    • Simon JA, Kingston RE. 2009. Mechanisms of polycomb gene silencing: Knowns and unknowns. Nat Rev Mol Cell Biol 10: 697-708.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 697-708
    • Simon, J.A.1    Kingston, R.E.2
  • 60
    • 0034234638 scopus 로고    scopus 로고
    • Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes
    • Smith RL, Johnson AD. 2000. Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25: 325-330.
    • (2000) Trends Biochem Sci , vol.25 , pp. 325-330
    • Smith, R.L.1    Johnson, A.D.2
  • 61
    • 0032030770 scopus 로고    scopus 로고
    • Histone acetylation and transcriptional regulatory mechanisms
    • Struhl K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12: 599-606.
    • (1998) Genes Dev , vol.12 , pp. 599-606
    • Struhl, K.1
  • 62
    • 57649221127 scopus 로고    scopus 로고
    • The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of the Gal4 recognition by Gal80
    • Thoden JB, Ryan LA, Reece RJ, Holden HM. 2008. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of the Gal4 recognition by Gal80. J Biol Chem 283: 30266-30272.
    • (2008) J Biol Chem , vol.283 , pp. 30266-30272
    • Thoden, J.B.1    Ryan, L.A.2    Reece, R.J.3    Holden, H.M.4
  • 63
    • 0028340797 scopus 로고
    • Functional dissection of the yeast Cyc8-Tup1 transcriptional corepressor complex
    • Tzamarias D, Struhl K. 1994. Functional dissection of the yeast Cyc8-Tup1 transcriptional corepressor complex. Nature 369: 758-761.
    • (1994) Nature , vol.369 , pp. 758-761
    • Tzamarias, D.1    Struhl, K.2
  • 64
    • 0028969881 scopus 로고
    • Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 co-repressor complex to differentially regulated promoters
    • Tzamarias D, Struhl K. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 co-repressor complex to differentially regulated promoters. Genes Dev 9: 821-831.
    • (1995) Genes Dev , vol.9 , pp. 821-831
    • Tzamarias, D.1    Struhl, K.2
  • 65
    • 0029965550 scopus 로고    scopus 로고
    • The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits
    • Varanasi US, Klis M, Mikesell PB, Trumbly RJ. 1996. The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16: 6707-6714.
    • (1996) Mol Cell Biol , vol.16 , pp. 6707-6714
    • Varanasi, U.S.1    Klis, M.2    Mikesell, P.B.3    Trumbly, R.J.4
  • 68
    • 0035105035 scopus 로고    scopus 로고
    • TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
    • Wu J, Suka N, Carlson M, Grunstein M. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7: 117-126.
    • (2001) Mol Cell , vol.7 , pp. 117-126
    • Wu, J.1    Suka, N.2    Carlson, M.3    Grunstein, M.4
  • 69
    • 0036191396 scopus 로고    scopus 로고
    • Caenorhabditis elegans unc-37/ groucho interacts genetically with components of the transcriptional mediator complex
    • Zhang H, Emmons SW. 2002. Caenorhabditis elegans unc-37/ groucho interacts genetically with components of the transcriptional mediator complex. Genetics 160: 799-803.
    • (2002) Genetics , vol.160 , pp. 799-803
    • Zhang, H.1    Emmons, S.W.2
  • 70
    • 4544308621 scopus 로고    scopus 로고
    • Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae
    • Zhang Z, Reese JC. 2004a. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279: 39240-39250.
    • (2004) J Biol Chem , vol.279 , pp. 39240-39250
    • Zhang, Z.1    Reese, J.C.2
  • 71
    • 3042551856 scopus 로고    scopus 로고
    • Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae
    • Zhang Z, Reese JC. 2004b. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 23: 2246-2257.
    • (2004) EMBO J , vol.23 , pp. 2246-2257
    • Zhang, Z.1    Reese, J.C.2
  • 72
    • 23844531920 scopus 로고    scopus 로고
    • Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
    • Zhang Z, Reese JC. 2005. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 25: 7399-7411.
    • (2005) Mol Cell Biol , vol.25 , pp. 7399-7411
    • Zhang, Z.1    Reese, J.C.2
  • 73
    • 0036021345 scopus 로고    scopus 로고
    • Functional dissection of the global repressor Tup1 in yeast: Dominant role of the Cterminal repression domain
    • Zhang Z, Varanasi U, Trumbly RJ. 2002. Functional dissection of the global repressor Tup1 in yeast: Dominant role of the Cterminal repression domain. Genetics 161: 957-969.
    • (2002) Genetics , vol.161 , pp. 957-969
    • Zhang, Z.1    Varanasi, U.2    Trumbly, R.J.3
  • 75
    • 55349109963 scopus 로고    scopus 로고
    • Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome
    • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008: 750-756.
    • (2008) Science , vol.2008 , pp. 750-756
    • Zhao, J.1    Sun, B.K.2    Erwin, J.A.3    Song, J.J.4    Lee, J.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.