-
1
-
-
78649846415
-
Steroid receptor coactivator (SRC) family: masters of systems biology
-
York B., O'Malley B.W. Steroid receptor coactivator (SRC) family: masters of systems biology. J. Biol. Chem. 2010, 285:38743-38750.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 38743-38750
-
-
York, B.1
O'Malley, B.W.2
-
2
-
-
69249110003
-
Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family
-
Xu J., et al. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 2009, 9:615-630.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 615-630
-
-
Xu, J.1
-
3
-
-
84894674781
-
Nuclear receptor coactivators: master regulators of human health and disease
-
Dasgupta S., et al. Nuclear receptor coactivators: master regulators of human health and disease. Annu. Rev. Med. 2013, 65:279-292.
-
(2013)
Annu. Rev. Med.
, vol.65
, pp. 279-292
-
-
Dasgupta, S.1
-
4
-
-
84859055574
-
The function of steroid receptor coactivator-1 in normal tissues and cancer
-
Walsh C.A., et al. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int. J. Biol. Sci. 2012, 8:470-485.
-
(2012)
Int. J. Biol. Sci.
, vol.8
, pp. 470-485
-
-
Walsh, C.A.1
-
5
-
-
84863707715
-
A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis
-
Han S.J., et al. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat. Med. 2012, 18:1102-1111.
-
(2012)
Nat. Med.
, vol.18
, pp. 1102-1111
-
-
Han, S.J.1
-
6
-
-
65949098187
-
The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis
-
Qin L., et al. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009, 69:3819-3827.
-
(2009)
Cancer Res.
, vol.69
, pp. 3819-3827
-
-
Qin, L.1
-
7
-
-
0036311892
-
The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP
-
Gehin M., et al. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol. Cell. Biol. 2002, 22:5923-5937.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 5923-5937
-
-
Gehin, M.1
-
8
-
-
77954255681
-
Integrative genomic profiling of human prostate cancer
-
Taylor B.S., et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.
-
(2010)
Cancer Cell
, vol.18
, pp. 11-22
-
-
Taylor, B.S.1
-
9
-
-
73549114238
-
Peroxisome proliferator-activated receptor coactivator-1 interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR
-
Shiota M., et al. Peroxisome proliferator-activated receptor coactivator-1 interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol. Endocrinol. 2009, 24:114-127.
-
(2009)
Mol. Endocrinol.
, vol.24
, pp. 114-127
-
-
Shiota, M.1
-
10
-
-
0034612264
-
The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development
-
Xu J., et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:6379-6384.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 6379-6384
-
-
Xu, J.1
-
11
-
-
0037420192
-
Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer
-
Osborne C.K., et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl. Cancer Inst. 2003, 95:353-361.
-
(2003)
J. Natl. Cancer Inst.
, vol.95
, pp. 353-361
-
-
Osborne, C.K.1
-
12
-
-
0037184960
-
SRC-1 and TIF2 control energy balance between white and brown adipose tissues
-
Picard F., et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 2002, 111:931-941.
-
(2002)
Cell
, vol.111
, pp. 931-941
-
-
Picard, F.1
-
13
-
-
55949084664
-
The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α
-
Coste A., et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:17187-17192.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 17187-17192
-
-
Coste, A.1
-
14
-
-
0035862979
-
Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator-activated receptors by competing with agonists
-
Murakami K., et al. Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator-activated receptors by competing with agonists. Biochem. J. 2001, 353:231-238.
-
(2001)
Biochem. J.
, vol.353
, pp. 231-238
-
-
Murakami, K.1
-
15
-
-
67651148136
-
Aging alters PPARγ in rodent and human adipose tissue by modulating the balance in steroid receptor coactivator-1
-
Miard S., et al. Aging alters PPARγ in rodent and human adipose tissue by modulating the balance in steroid receptor coactivator-1. Aging Cell 2009, 8:449-459.
-
(2009)
Aging Cell
, vol.8
, pp. 449-459
-
-
Miard, S.1
-
16
-
-
33645059167
-
Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance
-
Wang Z., et al. Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metab. 2006, 3:111-122.
-
(2006)
Cell Metab.
, vol.3
, pp. 111-122
-
-
Wang, Z.1
-
17
-
-
78651329138
-
Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis
-
Hartig S.M., et al. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. J. Cell Biol. 2011, 192:55-67.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 55-67
-
-
Hartig, S.M.1
-
18
-
-
84873047984
-
Research resource: tissue- and pathway-specific metabolomic profiles of the steroid receptor coactivator (SRC) Family
-
York B., et al. Research resource: tissue- and pathway-specific metabolomic profiles of the steroid receptor coactivator (SRC) Family. Mol. Endocrinol. 2013, 27:366-380.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 366-380
-
-
York, B.1
-
19
-
-
84896715962
-
SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm
-
Stashi E., et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 2014, 6:633-645.
-
(2014)
Cell Rep.
, vol.6
, pp. 633-645
-
-
Stashi, E.1
-
20
-
-
78650911273
-
Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption
-
Chopra A.R., et al. Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption. Cell Metab. 2011, 13:35-43.
-
(2011)
Cell Metab.
, vol.13
, pp. 35-43
-
-
Chopra, A.R.1
-
21
-
-
79960472726
-
Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis
-
Ma X., et al. Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis. J. Hepatol. 2011, 55:445-452.
-
(2011)
J. Hepatol.
, vol.55
, pp. 445-452
-
-
Ma, X.1
-
22
-
-
68149182609
-
Loss of steroid receptor co-activator-3 attenuates carbon tetrachloride-induced murine hepatic injury and fibrosis
-
Ma X., et al. Loss of steroid receptor co-activator-3 attenuates carbon tetrachloride-induced murine hepatic injury and fibrosis. Lab. Invest. 2009, 89:903-914.
-
(2009)
Lab. Invest.
, vol.89
, pp. 903-914
-
-
Ma, X.1
-
23
-
-
78049438081
-
The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles
-
Duteil D., et al. The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles. Cell Metab. 2010, 12:496-508.
-
(2010)
Cell Metab.
, vol.12
, pp. 496-508
-
-
Duteil, D.1
-
24
-
-
84860458173
-
Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy
-
York B., et al. Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy. Cell Metab. 2012, 15:752-763.
-
(2012)
Cell Metab.
, vol.15
, pp. 752-763
-
-
York, B.1
-
25
-
-
33746517873
-
The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism
-
Jeong J-W. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol. Endocrinol. 2006, 20:1138-1152.
-
(2006)
Mol. Endocrinol.
, vol.20
, pp. 1138-1152
-
-
Jeong, J.-W.1
-
26
-
-
78649516570
-
The coactivator SRC-1 is an essential coordinator of hepatic glucose production
-
Louet J-F., et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab. 2010, 12:606-618.
-
(2010)
Cell Metab.
, vol.12
, pp. 606-618
-
-
Louet, J.-F.1
-
27
-
-
84896894804
-
+/NADH homeostasis
-
+/NADH homeostasis. Mol. Endocrinol. 2014, 28:395-405.
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 395-405
-
-
Motamed, M.1
-
28
-
-
33845314007
-
Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway
-
Yan J., et al. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res. 2006, 66:11039-11046.
-
(2006)
Cancer Res.
, vol.66
, pp. 11039-11046
-
-
Yan, J.1
-
29
-
-
41149103859
-
Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression
-
Liao L., et al. Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Mol. Cell. Biol. 2008, 28:2460-2469.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 2460-2469
-
-
Liao, L.1
-
30
-
-
77954648696
-
Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology
-
York B., et al. Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11122-11127.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11122-11127
-
-
York, B.1
-
31
-
-
84864464496
-
The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models
-
Wang Z., et al. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models. PLoS ONE 2012, 7:e36961.
-
(2012)
PLoS ONE
, vol.7
-
-
Wang, Z.1
-
32
-
-
57149089662
-
Absence of the SRC-2 coactivator results in a glycogenopathy resembling von Gierke's disease
-
Chopra A.R., et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling von Gierke's disease. Science 2008, 322:1395-1399.
-
(2008)
Science
, vol.322
, pp. 1395-1399
-
-
Chopra, A.R.1
-
33
-
-
84861432291
-
A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer
-
(null) et A.
-
(null) et al. A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E1377-E1386.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
-
34
-
-
84887287834
-
Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization
-
Kommagani R., et al. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet. 2013, 9:e1003900.
-
(2013)
PLoS Genet.
, vol.9
-
-
Kommagani, R.1
-
35
-
-
84871742001
-
SRC-2 coactivator deficiency decreases functional reserve in response to pressure overload of mouse heart
-
Reineke E.L., et al. SRC-2 coactivator deficiency decreases functional reserve in response to pressure overload of mouse heart. PLoS ONE 2012, 7:e53395.
-
(2012)
PLoS ONE
, vol.7
-
-
Reineke, E.L.1
-
36
-
-
69549097429
-
Global gene expression profiling in the failing myocardium
-
Asakura M., Kitakaze M. Global gene expression profiling in the failing myocardium. Circ. J. 2009, 73:1568-1576.
-
(2009)
Circ. J.
, vol.73
, pp. 1568-1576
-
-
Asakura, M.1
Kitakaze, M.2
-
37
-
-
52449133102
-
CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme
-
Wang H., Tompkins L.M. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr. Drug Metab. 2008, 9:598-610.
-
(2008)
Curr. Drug Metab.
, vol.9
, pp. 598-610
-
-
Wang, H.1
Tompkins, L.M.2
-
38
-
-
62749200997
-
PIASy inhibits LRH-1-dependent CYP11A1 expression by competing for SRC-1 binding
-
Hsieh H-T., et al. PIASy inhibits LRH-1-dependent CYP11A1 expression by competing for SRC-1 binding. Biochem. J. 2009, 419:201.
-
(2009)
Biochem. J.
, vol.419
, pp. 201
-
-
Hsieh, H.-T.1
-
39
-
-
3442878698
-
Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1
-
Xu P.L. Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol. Endocrinol. 2004, 18:1887-1905.
-
(2004)
Mol. Endocrinol.
, vol.18
, pp. 1887-1905
-
-
Xu, P.L.1
-
40
-
-
33749551429
-
Underexpressed coactivators PGC1 AND SRC1 impair hepatocyte nuclear factor 4 function and promote dedifferentiation in human hepatoma cells
-
Martinez-Jimenez C.P. Underexpressed coactivators PGC1 AND SRC1 impair hepatocyte nuclear factor 4 function and promote dedifferentiation in human hepatoma cells. J. Biol. Chem. 2006, 281:29840-29849.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 29840-29849
-
-
Martinez-Jimenez, C.P.1
-
41
-
-
33751162645
-
Transcriptional activation of CYP2C9, CYP1A1, and CYP1A2 by hepatocyte nuclear factor 4 requires coactivators peroxisomal proliferator activated receptor-coactivator 1 and steroid receptor coactivator 1
-
Martinez-Jimenez C.P., et al. Transcriptional activation of CYP2C9, CYP1A1, and CYP1A2 by hepatocyte nuclear factor 4 requires coactivators peroxisomal proliferator activated receptor-coactivator 1 and steroid receptor coactivator 1. Mol. Pharmacol. 2006, 70:1681-1692.
-
(2006)
Mol. Pharmacol.
, vol.70
, pp. 1681-1692
-
-
Martinez-Jimenez, C.P.1
-
42
-
-
0035310906
-
Xenobiotic induction of cytochrome P450 2B1 (CYP2B1) is mediated by the orphan nuclear receptor constitutive androstane receptor (CAR) and requires steroid co-activator 1 (SRC-1) and the transcription factor Sp1
-
Muangmoonchai R., et al. Xenobiotic induction of cytochrome P450 2B1 (CYP2B1) is mediated by the orphan nuclear receptor constitutive androstane receptor (CAR) and requires steroid co-activator 1 (SRC-1) and the transcription factor Sp1. Biochem. J. 2001, 355:71-78.
-
(2001)
Biochem. J.
, vol.355
, pp. 71-78
-
-
Muangmoonchai, R.1
-
43
-
-
84875068550
-
Mitotane induces CYP3A4 expression via activation of the steroid and xenobiotic receptor
-
Takeshita A., et al. Mitotane induces CYP3A4 expression via activation of the steroid and xenobiotic receptor. J. Endocrinol. 2013, 216:297-305.
-
(2013)
J. Endocrinol.
, vol.216
, pp. 297-305
-
-
Takeshita, A.1
-
44
-
-
83555174696
-
SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism
-
Chen T., et al. SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism. J. Hepatol. 2012, 56:210-217.
-
(2012)
J. Hepatol.
, vol.56
, pp. 210-217
-
-
Chen, T.1
-
45
-
-
66049161739
-
Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids
-
Lachize S., et al. Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8038-8042.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8038-8042
-
-
Lachize, S.1
-
46
-
-
32644441364
-
Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function
-
Winnay J.N. Steroid receptor coactivator-1-deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function. Endocrinology 2005, 147:1322-1332.
-
(2005)
Endocrinology
, vol.147
, pp. 1322-1332
-
-
Winnay, J.N.1
-
47
-
-
84877357726
-
Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator
-
Zalachoras I., et al. Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7910-7915.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7910-7915
-
-
Zalachoras, I.1
-
48
-
-
84884794818
-
Research resource: loss of the steroid receptor coactivators confers neurobehavioral consequences
-
Stashi E., et al. Research resource: loss of the steroid receptor coactivators confers neurobehavioral consequences. Mol. Endocrinol. 2013, 27:1776-1787.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 1776-1787
-
-
Stashi, E.1
-
49
-
-
84871683410
-
Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice
-
Zhu L., et al. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice. Endocrinology 2012, 154:150-158.
-
(2012)
Endocrinology
, vol.154
, pp. 150-158
-
-
Zhu, L.1
-
50
-
-
33846031927
-
Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice
-
Patchev A.V., et al. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice. FASEB J. 2006, 21:231-238.
-
(2006)
FASEB J.
, vol.21
, pp. 231-238
-
-
Patchev, A.V.1
-
51
-
-
84883357296
-
Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle
-
Gupte R., et al. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:14616-14621.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 14616-14621
-
-
Gupte, R.1
-
52
-
-
84863979759
-
Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids
-
Chinenov Y., et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11776-11781.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11776-11781
-
-
Chinenov, Y.1
-
53
-
-
84872263381
-
Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes
-
Uhlenhaut N.H., et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 2013, 49:158-171.
-
(2013)
Mol. Cell
, vol.49
, pp. 158-171
-
-
Uhlenhaut, N.H.1
-
54
-
-
33746342151
-
Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells
-
An B-S., et al. Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells. J. Biol. Chem. 2006, 281:20817-20824.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 20817-20824
-
-
An, B.-S.1
-
55
-
-
80052485041
-
AIB1 shows variation in interaction with ERβTAD and expression as a function of age in mouse brain
-
Paramanik V., Thakur M.K. AIB1 shows variation in interaction with ERβTAD and expression as a function of age in mouse brain. Biogerontology 2011, 12:321-328.
-
(2011)
Biogerontology
, vol.12
, pp. 321-328
-
-
Paramanik, V.1
Thakur, M.K.2
-
56
-
-
84867728827
-
Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming
-
Percharde M., et al. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev. 2012, 26:2286-2298.
-
(2012)
Genes Dev.
, vol.26
, pp. 2286-2298
-
-
Percharde, M.1
-
57
-
-
77956935644
-
Molecular determinants of the interactions between SRC-1 and LXR/RXR heterodimers
-
Son Y.L., Lee Y.C. Molecular determinants of the interactions between SRC-1 and LXR/RXR heterodimers. FEBS Lett. 2010, 584:3862-3866.
-
(2010)
FEBS Lett.
, vol.584
, pp. 3862-3866
-
-
Son, Y.L.1
Lee, Y.C.2
-
58
-
-
13444288395
-
Ligand-dependent contribution of RXRβ to cholesterol homeostasis in Sertoli cells
-
Mascrez B., et al. Ligand-dependent contribution of RXRβ to cholesterol homeostasis in Sertoli cells. EMBO Rep. 2004, 5:285-290.
-
(2004)
EMBO Rep.
, vol.5
, pp. 285-290
-
-
Mascrez, B.1
-
59
-
-
54049099951
-
Modulation of hepatocyte nuclear factor-4α function by the peroxisome-proliferator-activated receptor-γ co-activator-1α in the acute-phase response
-
Wang Z., Burke P.A. Modulation of hepatocyte nuclear factor-4α function by the peroxisome-proliferator-activated receptor-γ co-activator-1α in the acute-phase response. Biochem. J. 2008, 415:289.
-
(2008)
Biochem. J.
, vol.415
, pp. 289
-
-
Wang, Z.1
Burke, P.A.2
-
60
-
-
33846174641
-
Tumor necrosis factor and interleukin 1 decrease RXRα, PPARα, PPARγ, LXRα, and the coactivators SRC-1, PGC-1α, and PGC-1β in liver cells
-
Kim M.S., et al. Tumor necrosis factor and interleukin 1 decrease RXRα, PPARα, PPARγ, LXRα, and the coactivators SRC-1, PGC-1α, and PGC-1β in liver cells. Metabolism 2007, 56:267-279.
-
(2007)
Metabolism
, vol.56
, pp. 267-279
-
-
Kim, M.S.1
-
61
-
-
27444439757
-
Downregulation of liver X receptor in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines
-
Wang Y. Downregulation of liver X receptor in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J. Lipid Res. 2005, 46:2377-2387.
-
(2005)
J. Lipid Res.
, vol.46
, pp. 2377-2387
-
-
Wang, Y.1
-
62
-
-
84860733689
-
Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation
-
Musille P.M., et al. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation. Nat. Struct. Mol. Biol. 2012, 19:532-537.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 532-537
-
-
Musille, P.M.1
-
63
-
-
77953243855
-
A second class of nuclear receptors for oxysterols: regulation of RORα and RORγ activity by 24S-hydroxycholesterol (cerebrosterol)
-
Wang Y., et al. A second class of nuclear receptors for oxysterols: regulation of RORα and RORγ activity by 24S-hydroxycholesterol (cerebrosterol). Biochim. Biophys. Acta 2010, 1801:917-923.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 917-923
-
-
Wang, Y.1
-
64
-
-
33644981509
-
A map of recent positive selection in the human genome
-
Voight B.F., et al. A map of recent positive selection in the human genome. PLoS Biol. 2006, 4:e72.
-
(2006)
PLoS Biol.
, vol.4
-
-
Voight, B.F.1
-
65
-
-
84866607246
-
Nuclear receptor coregulators: modulators of pathology and therapeutic targets
-
Lonard D.M., O'Malley B.W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 2012, 8:598-604.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 598-604
-
-
Lonard, D.M.1
O'Malley, B.W.2
-
66
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
-
67
-
-
67650914230
-
AMPK in health and disease
-
Steinberg G.R., Kemp B.E. AMPK in health and disease. Physiol. Rev. 2009, 89:1025-1078.
-
(2009)
Physiol. Rev.
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
68
-
-
82055185689
-
Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1
-
Wang Y., et al. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol. Endocrinol. 2011, 25:2041-2053.
-
(2011)
Mol. Endocrinol.
, vol.25
, pp. 2041-2053
-
-
Wang, Y.1
-
69
-
-
84896517086
-
Bufalin is a potent small molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1
-
Wang Y., et al. Bufalin is a potent small molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014, 74:1506-1517.
-
(2014)
Cancer Res.
, vol.74
, pp. 1506-1517
-
-
Wang, Y.1
-
70
-
-
0015218093
-
Progesterone-binding components of chick oviduct III. Chromatin acceptor sites
-
Spelsberg T.C., et al. Progesterone-binding components of chick oviduct III. Chromatin acceptor sites. J. Biol. Chem. 1971, 246:4188-4197.
-
(1971)
J. Biol. Chem.
, vol.246
, pp. 4188-4197
-
-
Spelsberg, T.C.1
-
71
-
-
0024458145
-
Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element
-
Murray M.B., Towle H.C. Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element. Mol. Endocrinol. 1989, 3:1434-1442.
-
(1989)
Mol. Endocrinol.
, vol.3
, pp. 1434-1442
-
-
Murray, M.B.1
Towle, H.C.2
-
72
-
-
0024277919
-
Converting a eukaryotic transcriptional inhibitor into an activator
-
Ma J., Ptashne M. Converting a eukaryotic transcriptional inhibitor into an activator. Cell 1988, 55:443-446.
-
(1988)
Cell
, vol.55
, pp. 443-446
-
-
Ma, J.1
Ptashne, M.2
-
73
-
-
0026091129
-
Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation
-
Dynlacht B.D., et al. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 1991, 66:563-576.
-
(1991)
Cell
, vol.66
, pp. 563-576
-
-
Dynlacht, B.D.1
-
74
-
-
0026693624
-
A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors
-
Luo Y., et al. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 1992, 71:231-241.
-
(1992)
Cell
, vol.71
, pp. 231-241
-
-
Luo, Y.1
-
75
-
-
0026653659
-
The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor
-
Vegeto E., et al. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 1992, 69:703-713.
-
(1992)
Cell
, vol.69
, pp. 703-713
-
-
Vegeto, E.1
-
76
-
-
0026726806
-
Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation
-
Allan G.F., et al. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J. Biol. Chem. 1992, 267:19513-19520.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 19513-19520
-
-
Allan, G.F.1
-
77
-
-
0026472371
-
Identification of a novel negative regulator of steroid receptor function
-
McDonnell D.P., et al. Identification of a novel negative regulator of steroid receptor function. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:10563-10567.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 10563-10567
-
-
McDonnell, D.P.1
-
78
-
-
0028060029
-
Nuclear protein CBP is a coactivator for the transcription factor CREB
-
Kwok R.P., et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994, 370:223-226.
-
(1994)
Nature
, vol.370
, pp. 223-226
-
-
Kwok, R.P.1
-
79
-
-
0028233383
-
Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription
-
Halachmi S., et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 1994, 264:1455-1458.
-
(1994)
Science
, vol.264
, pp. 1455-1458
-
-
Halachmi, S.1
-
80
-
-
0028988482
-
The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing
-
Baniahmad A., et al. The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 1995, 15:76-86.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 76-86
-
-
Baniahmad, A.1
-
81
-
-
0029154931
-
Polarity-specific activities of retinoic acid receptors determined by a co-repressor
-
Kurokawa R., et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 1995, 377:451-454.
-
(1995)
Nature
, vol.377
, pp. 451-454
-
-
Kurokawa, R.1
-
82
-
-
0029097233
-
A transcriptional co-repressor that interacts with nuclear hormone receptors
-
Chen J.D., Evans R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995, 377:454-457.
-
(1995)
Nature
, vol.377
, pp. 454-457
-
-
Chen, J.D.1
Evans, R.M.2
-
83
-
-
0028846193
-
Sequence and characterization of a coactivator for the steroid hormone receptor superfamily
-
Oñate S.A., et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995, 270:1354-1357.
-
(1995)
Science
, vol.270
, pp. 1354-1357
-
-
Oñate, S.A.1
-
84
-
-
34250881447
-
Coregulators: from whence came these 'master genes'
-
O'Malley B.W. Coregulators: from whence came these 'master genes'. Mol. Endocrinol. 2007, 21:1009-1013.
-
(2007)
Mol. Endocrinol.
, vol.21
, pp. 1009-1013
-
-
O'Malley, B.W.1
-
85
-
-
79957575162
-
Analysis of the human endogenous coregulator complexome
-
Malovannaya A., et al. Analysis of the human endogenous coregulator complexome. Cell 2011, 145:787-799.
-
(2011)
Cell
, vol.145
, pp. 787-799
-
-
Malovannaya, A.1
|