메뉴 건너뛰기




Volumn 42, Issue 2, 2014, Pages 669-699

Robust subspace clustering

Author keywords

Dantzig selector; Geometric functional analysis; LASSO; Multiple hypothesis testing; Nonasymptotic random matrix theory; Spectral clustering; Subspace clustering; True and false discoveries; 1 minimization

Indexed keywords


EID: 84901725652     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-AOS1199     Document Type: Article
Times cited : (323)

References (61)
  • 2
    • 84867786804 scopus 로고    scopus 로고
    • Nearness to local subspace algorithm for subspace and motion segmentation
    • ALDROUBI, A. and SEKMEN, A. (2012). Nearness to local subspace algorithm for subspace and motion segmentation. Signal Process. Lett., IEEE 19 704-707.
    • (2012) Signal Process. Lett., IEEE , vol.19 , pp. 704-707
    • Aldroubi, A.1    Sekmen, A.2
  • 3
    • 79951912473 scopus 로고    scopus 로고
    • Clustering based on pairwise distances when the data is of mixed dimensions
    • MR2815843
    • ARIAS-CASTRO, E. (2011). Clustering based on pairwise distances when the data is of mixed dimensions. IEEE Trans. Inform. Theory 57 1692-1706. MR2815843
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 1692-1706
    • Arias-Castro, E.1
  • 4
    • 84856032134 scopus 로고    scopus 로고
    • Spectral clustering based on local linear approximations
    • MR2861697
    • ARIAS-CASTRO, E., CHEN, G. and LERMAN, G. (2011). Spectral clustering based on local linear approximations. Electron. J. Stat. 5 1537-1587. MR2861697
    • (2011) Electron. J. Stat. , vol.5 , pp. 1537-1587
    • Arias-Castro, E.1    Chen, G.2    Lerman, G.3
  • 6
    • 79953211463 scopus 로고    scopus 로고
    • Identification of switched linear systems via sparse optimization
    • MR2878328
    • BAKO, L. (2011). Identification of switched linear systems via sparse optimization. Automatica J. IFAC 47 668-677. MR2878328
    • (2011) Automatica J. IFAC , vol.47 , pp. 668-677
    • Bako, L.1
  • 8
    • 79251496987 scopus 로고    scopus 로고
    • The dynamics of message passing on dense graphs, with applications to compressed sensing
    • MR2810285
    • BAYATI, M. andMONTANARI, A. (2011). The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Trans. Inform. Theory 57 764-785. MR2810285
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 764-785
    • Bayati, M.1    Montanari, A.2
  • 9
    • 84858956033 scopus 로고    scopus 로고
    • The LASSO risk for Gaussian matrices
    • MR2951312
    • BAYATI, M. andMONTANARI, A. (2012). The LASSO risk for Gaussian matrices. IEEE Trans. Inform. Theory 58 1997-2017. MR2951312
    • (2012) IEEE Trans. Inform. Theory , vol.58 , pp. 1997-2017
    • Bayati, M.1    Montanari, A.2
  • 10
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • MR2833262
    • BECKER, S. R., CANDÈS, E. J. and GRANT, M. C. (2011). Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3 165-218. MR2833262
    • (2011) Math. Program. Comput. , vol.3 , pp. 165-218
    • Becker, S.R.1    Candès, E.J.2    Grant, M.C.3
  • 11
    • 82255196005 scopus 로고    scopus 로고
    • Square-root lasso Pivotal recovery of sparse signals via conic programming
    • MR2860324
    • BELLONI, A., CHERNOZHUKOV, V. andWANG, L. (2011). Square-root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika 98 791-806. MR2860324
    • (2011) Biometrika , vol.98 , pp. 791-806
    • Belloni, A.1    Chernozhukov, V.2    Wang, L.3
  • 15
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDÈS, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 16
    • 70349452039 scopus 로고    scopus 로고
    • Foundations of a multi-way spectral clustering framework for hybrid linear modeling
    • MR2534403
    • CHEN, G. and LERMAN, G. (2009). Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9 517-558. MR2534403
    • (2009) Found. Comput. Math. , vol.9 , pp. 517-558
    • Chen, G.1    Lerman, G.2
  • 17
    • 58149494138 scopus 로고    scopus 로고
    • Spectral curvature clustering (SCC)
    • CHEN, G. and LERMAN, G. (2009). Spectral curvature clustering (SCC). Int. J. Comput. Vis. 81 317-330.
    • (2009) Int. J. Comput. Vis. , vol.81 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 18
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • CHEN, Y., NASRABADI, N. M. and TRAN, T. D. (2011). Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 99 1-13.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.99 , pp. 1-13
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 19
    • 84877788363 scopus 로고    scopus 로고
    • Fused sparsity and robust estimation for linear models with unknown variance
    • DALALYAN, A. and CHEN, Y. (2012). Fused sparsity and robust estimation for linear models with unknown variance. In Advances in Neural Information Processing Systems 25 1268- 1276.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1268-1276
    • Dalalyan, A.1    Chen, Y.2
  • 22
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithms, theory, and applications
    • ELHAMIFAR, E. and VIDAL, R. (2013). Sparse subspace clustering: Algorithms, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35 2765-2781.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 24
    • 84871544368 scopus 로고    scopus 로고
    • High-dimensional regression with unknown variance
    • MR3025131
    • GIRAUD, C., HUET, S. and VERZELEN, N. (2012). High-dimensional regression with unknown variance. Statist. Sci. 27 500-518. MR3025131
    • (2012) Statist. Sci. , vol.27 , pp. 500-518
    • Giraud, C.1    Huet, S.2    Verzelen, N.3
  • 30
    • 84867092906 scopus 로고    scopus 로고
    • Robust recovery of multiple subspaces by geometric lp minimization
    • MR2906883
    • LERMAN, G. and ZHANG, T. (2011). Robust recovery of multiple subspaces by geometric lp minimization. Ann. Statist. 39 2686-2715. MR2906883
    • (2011) Ann. Statist. , vol.39 , pp. 2686-2715
    • Lerman, G.1    Zhang, T.2
  • 32
    • 84872078104 scopus 로고    scopus 로고
    • High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
    • MR3015038
    • LOH, P.-L. and WAINWRIGHT, M. J. (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. Ann. Statist. 40 1637-1664. MR3015038
    • (2012) Ann. Statist. , vol.40 , pp. 1637-1664
    • Loh, P.-L.1    Wainwright, M.J.2
  • 35
    • 24344450067 scopus 로고    scopus 로고
    • Identification of deterministic switched arx systems via identification of algebraic varieties
    • MA, Y. and VIDAL, R. (2005). Identification of deterministic switched arx systems via identification of algebraic varieties. In Hybrid Systems: Computation and Control 449-465.
    • (2005) Hybrid Systems: Computation and Control , pp. 449-465
    • Ma, Y.1    Vidal, R.2
  • 36
    • 50949096624 scopus 로고    scopus 로고
    • Estimation of subspace arrangements with applications in modeling and segmenting mixed data
    • MR2429444
    • MA, Y., YANG, A. Y., DERKSEN, H. and FOSSUM, R. (2008). Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50 413-458. MR2429444
    • (2008) SIAM Rev. , vol.50 , pp. 413-458
    • Ma, Y.1    Yang, A.Y.2    Derksen, H.3    Fossum, R.4
  • 37
    • 84894550914 scopus 로고    scopus 로고
    • Subspace clustering of high-dimensional data: A predictive approach
    • MR3165525
    • MCWILLIAMS, B. andMONTANA, G. (2014). Subspace clustering of high-dimensional data: A predictive approach. Data Min. Knowl. Discov. 28 736-772. MR3165525
    • (2014) Data Min. Knowl. Discov. , vol.28 , pp. 736-772
    • Mcwilliams, B.1    Montana, G.2
  • 38
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 39
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • MÜLLER, E., GUNNEMANN, S., ASSENT, I. and SEIDL, T. (2009). Evaluating clustering in subspace projections of high dimensional data. Proc. VLDB Endow. 2 1270-1281.
    • (2009) Proc. VLDB Endow. , vol.2 , pp. 1270-1281
    • Müller, E.1    Gunnemann, S.2    Assent, I.3    Seidl, T.4
  • 41
    • 79953131593 scopus 로고    scopus 로고
    • Model (in) validation of switched arx systems with unknown switches and its application to activity monitoring
    • OZAY, N., SZNAIER, M. and LAGOA, C. (2010).Model (in) validation of switched arx systems with unknown switches and its application to activity monitoring. In IEEE Conference on Decision and Control, CDC 7624-7630.
    • (2010) IEEE Conference on Decision and Control, CDC , pp. 7624-7630
    • Ozay, N.1    Sznaier, M.2    Lagoa, C.3
  • 43
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • PARSONS, L., HAQUE, E. and LIU, H. (2004). Subspace clustering for high dimensional data: A review. ACM SIGKDD Explor. Newsl. 6 90-105.
    • (2004) ACM SIGKDD Explor. Newsl. , vol.6 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 45
    • 77957596337 scopus 로고    scopus 로고
    • Sparse recovery under matrix uncertainty
    • MR2722451
    • ROSENBAUM, M. and TSYBAKOV, A. B. (2010). Sparse recovery under matrix uncertainty. Ann. Statist. 38 2620-2651. MR2722451
    • (2010) Ann. Statist. , vol.38 , pp. 2620-2651
    • Rosenbaum, M.1    Tsybakov, A.B.2
  • 46
    • 84884476031 scopus 로고    scopus 로고
    • A geometric analysis of subspace clustering with outliers
    • MR3059081
    • SOLTANOLKOTABI, M. and CANDÉS, E. J. (2012). A geometric analysis of subspace clustering with outliers. Ann. Statist. 40 2195-2238. MR3059081
    • (2012) Ann. Statist. , vol.40 , pp. 2195-2238
    • Soltanolkotabi, M.1    Candés, E.J.2
  • 48
    • 77955057877 scopus 로고    scopus 로고
    • ℓ1-penalization for mixture regression models
    • MR2677722
    • STÄDLER, N., BÜHLMANN, P. and VAN DE GEER, S. (2010). ℓ1-penalization for mixture regression models. TEST 19 209-256. MR2677722
    • (2010) TEST , vol.19 , pp. 209-256
    • Städler, N.1    Bühlmann, P.2    Van De Geer, S.3
  • 49
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • MR2999166
    • SUN, T. and ZHANG, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879-898. MR2999166
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 51
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • TOMASI, C. and KANADE, T. (1992). Shape and motion from image streams under orthography: A factorization method. Int. J. Comput. Vis. 9 137-154. (Pubitemid 23621943)
    • (1992) International Journal of Computer Vision , vol.9 , Issue.2 , pp. 137-154
    • Carlo, T.1    Takeo, K.2
  • 52
    • 0034349278 scopus 로고    scopus 로고
    • Nearest q-flat to m points
    • MR1757267
    • TSENG, P. (2000). Nearest q-flat to m points. J. Optim. Theory Appl. 105 249-252. MR1757267
    • (2000) J. Optim. Theory Appl. , vol.105 , pp. 249-252
    • Tseng, P.1
  • 55
    • 33745812742 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, nonrigid, degenerate and nondegenerate
    • YAN, J. and POLLEFEYS, M. (2006). A general framework for motion segmentation: Independent, articulated, rigid, nonrigid, degenerate and nondegenerate. In ECCV 2006 94-106.
    • (2006) ECCV , vol.2006 , pp. 94-106
    • Yan, J.1    Pollefeys, M.2
  • 58
    • 84867053797 scopus 로고    scopus 로고
    • Hybrid linear modeling via local best-fit flats
    • MR2979307
    • ZHANG, T., SZLAM, A., WANG, Y. and LERMAN, G. (2012). Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. 100 217-240. MR2979307
    • (2012) Int. J. Comput. Vis. , vol.100 , pp. 217-240
    • Zhang, T.1    Szlam, A.2    Wang, Y.3    Lerman, G.4
  • 60
    • 84901722863 scopus 로고    scopus 로고
    • www.stanford.edu/-mahdisol/RSC
  • 61
    • 84901722982 scopus 로고    scopus 로고
    • users.ece.gatech.edu/-sasif/homotopy.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.