메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1259-1267

Fused sparsity and robust estimation for linear models with unknown variance

Author keywords

[No Author keywords available]

Indexed keywords

DANTZIG SELECTOR; EXPERIMENTAL EVALUATION; FINITE SAMPLES; LEARNING TASKS; ROBUST ESTIMATION; SECOND-ORDER CONE PROGRAM; SPARSE REPRESENTATION; SYNTHETIC AND REAL DATA;

EID: 84877788363     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (32)

References (28)
  • 1
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • Stephen Becker, Emmanuel Candès, and Michael Grant. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput., 3(3):165-218, 2011.
    • (2011) Math. Program. Comput. , vol.3 , Issue.3 , pp. 165-218
    • Becker, S.1    Candès, E.2    Grant, M.3
  • 2
    • 84877742675 scopus 로고    scopus 로고
    • Square-root lasso: Pivotal recovery of sparse signals via conic programming
    • to appear
    • A. Belloni, Victor Chernozhukov, and L. Wang. Square-root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika, to appear, 2012.
    • (2012) Biometrika
    • Belloni, A.1    Chernozhukov, V.2    Wang, L.3
  • 3
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • Peter J. Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann. Statist., 37(4):1705-1732, 2009.
    • (2009) Ann. Statist. , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 4
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Emmanuel Candes and Terence Tao. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35(6):2313-2351, 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 5
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • Emmanuel J. Candès. The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris, 346(9-10):589-592, 2008.
    • (2008) C. R. Math. Acad. Sci. Paris , vol.346 , Issue.9-10 , pp. 589-592
    • Candès, E.J.1
  • 6
    • 46749134483 scopus 로고    scopus 로고
    • Highly robust error correction by convex programming
    • Emmanuel J. Candès and Paige A. Randall. Highly robust error correction by convex programming. IEEE Trans. Inform. Theory, 54(7):2829-2840, 2008.
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.7 , pp. 2829-2840
    • Candès, E.J.1    Randall, P.A.2
  • 7
    • 84858721716 scopus 로고    scopus 로고
    • 1-penalized robust estimation for a class of inverse problems arising in multiview geometry
    • 1-penalized robust estimation for a class of inverse problems arising in multiview geometry. In NIPS, pages 441-449, 2009.
    • (2009) NIPS , pp. 441-449
    • Dalalyan, A.S.1    Keriven, R.2
  • 8
    • 84859420852 scopus 로고    scopus 로고
    • Robust estimation for an inverse problem arising in multiview geometry
    • Arnak S. Dalalyan and Renaud Keriven. Robust estimation for an inverse problem arising in multiview geometry. J. Math. Imaging Vision., 43(1):10-23, 2012.
    • (2012) J. Math. Imaging Vision. , vol.43 , Issue.1 , pp. 10-23
    • Dalalyan, A.S.1    Keriven, R.2
  • 11
    • 78651322176 scopus 로고    scopus 로고
    • Multiple change-point estimation with a total variation penalty
    • Z. Harchaoui and C. Lévy-Leduc. Multiple change-point estimation with a total variation penalty. J. Amer. Statist. Assoc., 105(492):1480-1493, 2010.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , Issue.492 , pp. 1480-1493
    • Harchaoui, Z.1    Lévy-Leduc, C.2
  • 12
    • 76749138862 scopus 로고    scopus 로고
    • Catching change-points with lasso
    • John Platt, Daphne Koller, Yoram Singer, and Sam Roweis, editors. Curran Associates, Inc.
    • Zäid Harchaoui and Céline Lévy-Leduc. Catching change-points with lasso. In John Platt, Daphne Koller, Yoram Singer, and Sam Roweis, editors, NIPS. Curran Associates, Inc., 2007.
    • (2007) NIPS
    • Harchaoui, Z.1    Lévy-Leduc, C.2
  • 14
    • 85162489534 scopus 로고    scopus 로고
    • On the accuracy of l1-filtering of signals with block-sparse structure
    • A. Iouditski, F. Kilinc Karzan, A. S. Nemirovski, and B. T. Polyak. On the accuracy of l1-filtering of signals with block-sparse structure. In NIPS 24, pages 1260-1268. 2011.
    • (2011) NIPS , vol.24 , pp. 1260-1268
    • Iouditski, A.1    Kilinc Karzan, F.2    Nemirovski, A.S.3    Polyak, B.T.4
  • 15
    • 84859863552 scopus 로고    scopus 로고
    • Robust regression through the Huber's criterion and adaptive lasso penalty
    • S. Lambert-Lacroix and L. Zwald. Robust regression through the Huber's criterion and adaptive lasso penalty. Electron. J. Stat., 5:1015-1053, 2011.
    • (2011) Electron. J. Stat. , vol.5 , pp. 1015-1053
    • Lambert-Lacroix, S.1    Zwald, L.2
  • 16
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 17
    • 0031514745 scopus 로고    scopus 로고
    • Locally adaptive regression splines
    • E. Mammen and S. van de Geer. Locally adaptive regression splines. Ann. Statist., 25(1):387-413, 1997.
    • (1997) Ann. Statist. , vol.25 , Issue.1 , pp. 387-413
    • Mammen, E.1    Van De Geer, S.2
  • 18
    • 85162357937 scopus 로고    scopus 로고
    • Robust lasso with missing and grossly corrupted observations
    • J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, editors
    • Nam H. Nguyen, Nasser M. Nasrabadi, and Trac D. Tran. Robust lasso with missing and grossly corrupted observations. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 1881-1889. 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1881-1889
    • Nguyen, N.H.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 19
    • 69049110995 scopus 로고    scopus 로고
    • Properties and refinements of the fused lasso
    • A. Rinaldo. Properties and refinements of the fused lasso. Ann. Statist., 37(5B):2922-2952, 2009.
    • (2009) Ann. Statist. , vol.37 , Issue.5 B , pp. 2922-2952
    • Rinaldo, A.1
  • 22
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02 a MATLAB toolbox for optimization over symmetric cones
    • J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw., 11/12(1-4):625-653, 1999.
    • (1999) Optim. Methods Softw. , vol.11-12 , Issue.1-4 , pp. 625-653
    • Sturm, J.F.1
  • 23
    • 77955055850 scopus 로고    scopus 로고
    • Comments on: ℓ1-penalization for mixture regression models
    • T. Sun and C.-H. Zhang. Comments on: ℓ1-penalization for mixture regression models. TEST, 19(2): 270-275, 2010.
    • (2010) TEST , vol.19 , Issue.2 , pp. 270-275
    • Sun, T.1    Zhang, C.-H.2
  • 25
    • 77954740485 scopus 로고    scopus 로고
    • Computer vision: Algorithms and applications
    • Springer
    • R. Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer, 2010.
    • (2010) Texts in Computer Science
    • Szeliski, R.1
  • 26
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1): 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 28
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • Sara A. van de Geer and Peter Bühlmann. On the conditions used to prove oracle results for the Lasso. Electron. J. Stat., 3:1360-1392, 2009.
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.