메뉴 건너뛰기




Volumn 28, Issue 3, 2014, Pages 736-772

Subspace clustering of high-dimensional data: A predictive approach

Author keywords

Microarrays; Model selection; PCA; PRESS statistics; Subspace clustering; Variable selection

Indexed keywords


EID: 84894550914     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-013-0317-y     Document Type: Article
Times cited : (82)

References (47)
  • 1
    • 79954535330 scopus 로고    scopus 로고
    • Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    • 10.1093/bioinformatics/btr112 10.1093/bioinformatics/btr112
    • Baek J, McLachlan GJ (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics (Oxford, England) 27(9):1269-1276. doi: 10.1093/bioinformatics/btr112
    • (2011) Bioinformatics (Oxford, England) , vol.27 , Issue.9 , pp. 1269-1276
    • Baek, J.1    McLachlan, G.J.2
  • 4
    • 0010474110 scopus 로고    scopus 로고
    • K-Plane clustering
    • 10.1023/A:1008324625522 0990.90135 1770524
    • Bradley P, Mangasarian O (2000) k-Plane clustering. J Glob Optim 16:23-32
    • (2000) J Glob Optim , vol.16 , pp. 23-32
    • Bradley, P.1    Mangasarian, O.2
  • 5
    • 39949083755 scopus 로고    scopus 로고
    • Selecting the number of components in principal component analysis using cross-validation approximations
    • 10.1007/s00216-007-1790-1
    • Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Selecting the number of components in principal component analysis using cross-validation approximations. Anal Bioanal Chem 390:1241-1251
    • (2008) Anal Bioanal Chem , vol.390 , pp. 1241-1251
    • Bro, R.1    Kjeldahl, K.2    Smilde, A.K.3    Kiers, H.A.L.4
  • 6
    • 85088762954 scopus 로고    scopus 로고
    • Computing clusters of correlation connected objects
    • Bhm C, Kailing K, Krger P, Zimek A (2004) Computing clusters of correlation connected objects. In: SIGMOD
    • (2004) SIGMOD
    • Bhm, C.1    Kailing, K.2    Krger, P.3    Zimek, A.4
  • 7
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • 10.1109/msp.2007.914731 10.1109/MSP.2007.914731
    • Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21-30. doi: 10.1109/msp.2007.914731
    • (2008) IEEE Signal Process Mag , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.J.1    Wakin, M.B.2
  • 8
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • 10.1214/ss/1177013622 10.1214/ss/1177013622 858516
    • Chatterjee S, Hadi A (1986) Influential observations, high leverage points, and outliers in linear regression. Statl Sci 1:379-393. doi: 10.1214/ss/1177013622
    • (1986) Statl Sci , vol.1 , pp. 379-393
    • Chatterjee, S.1    Hadi, A.2
  • 9
    • 58149494138 scopus 로고    scopus 로고
    • Spectral Curvature Clustering (SCC)
    • 10.1007/s11263-008-0178-9 10.1007/s11263-008-0178-9
    • Chen G, Lerman G (2008) Spectral Curvature Clustering (SCC). Int J Comput Vis 81:317-330. doi: 10.1007/s11263-008-0178-9
    • (2008) Int J Comput Vis , vol.81 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 10
    • 0001490588 scopus 로고
    • Assessment of local influence
    • 0608.62041
    • Cook RD (1986) Assessment of local influence. J R Stat Soc Ser B 48:133-169
    • (1986) J R Stat Soc ser B , vol.48 , pp. 133-169
    • Cook, R.D.1
  • 17
    • 0003946510 scopus 로고    scopus 로고
    • 2nd edn. Springer Series in Statistics. Springer, New York. doi: 10.1007/b98835
    • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer Series in Statistics. Springer, New York. doi: 10.1007/b98835
    • (2002) Principal Component Analysis
    • Jolliffe, I.T.1
  • 18
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1-58
    • (2009) ACM Trans Knowl Discov Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel Hp, K.1
  • 19
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • 10.1007/s11222-007-9033-z 10.1007/s11222-007-9033-z 2409803
    • Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395-416. doi: 10.1007/s11222-007-9033-z
    • (2007) Stat Comput , vol.17 , pp. 395-416
    • Luxburg, U.1
  • 23
    • 77958487535 scopus 로고    scopus 로고
    • Stability selection
    • 10.1111/j.1467-9868.2010.00740.x 10.1111/j.1467-9868.2010.00740.x
    • Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Ser B 72:417-473. doi: 10.1111/j.1467-9868.2010.00740.x
    • (2010) J R Stat Soc ser B , vol.72 , pp. 417-473
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 0035948759 scopus 로고    scopus 로고
    • Detection of single influential points in OLS regression model building
    • 10.1016/S0003-2670(01)01040-6 10.1016/S0003-2670(01)01040-6
    • Meloun M (2001) Detection of single influential points in OLS regression model building. Anal Chim Acta 439(2):169-191. doi: 10.1016/S0003-2670(01)01040- 6
    • (2001) Anal Chim Acta , vol.439 , Issue.2 , pp. 169-191
    • Meloun, M.1
  • 25
    • 0000669504 scopus 로고
    • The efficient cross-validation of principal components applied to principal component regression
    • 10.1007/BF00142664 10.1007/BF00142664
    • Mertens B, Fearn T, Thompson M (1995) The efficient cross-validation of principal components applied to principal component regression. Stat Comput 5:227-235. doi: 10.1007/BF00142664
    • (1995) Stat Comput , vol.5 , pp. 227-235
    • Mertens, B.1    Fearn, T.2    Thompson, M.3
  • 26
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S, Tamayo P, Mesirov J, Golub G (2003) Consensus clustering a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91-118
    • (2003) Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, G.4
  • 29
    • 31344436667 scopus 로고    scopus 로고
    • Identifying multiple influential observations in linear regression
    • doi: 10.1080/02664760500163599.
    • Rahmatullah Imon A (2005) Identifying multiple influential observations in linear regression. J Appl Stat 32:929-946. doi: 10.1080/02664760500163599.
    • (2005) J Appl Stat , vol.32 , pp. 929-946
    • Rahmatullah Imon, A.1
  • 31
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • 10.1038/nbt0308-303 10.1038/nbt0308-303
    • Ringnr M (2008) What is principal component analysis? Nat Biotechnol 26(3):303-304. doi: 10.1038/nbt0308-303
    • (2008) Nat Biotechnol , vol.26 , Issue.3 , pp. 303-304
    • Ringnr, M.1
  • 32
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • 10.1016/j.jmva.2007.06.007 1141.62049 2419336
    • Shen H, Huang J (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99:1015-1034
    • (2008) J Multivar Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 33
    • 0000905617 scopus 로고
    • Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
    • 10.1214/aoms/1177729893 0037.00901 35118
    • Sherman J, Morrison W (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124-127
    • (1950) Ann Math Stat , vol.21 , Issue.1 , pp. 124-127
    • Sherman, J.1    Morrison, W.2
  • 36
    • 84894584623 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • The Cancer Genome Atlas Research Network
    • The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:91-118
    • (2011) Nature , vol.474 , pp. 91-118
  • 37
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the lasso
    • 1379242
    • Tibshirani R (1994) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267-288
    • (1994) J R Stat Soc ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 38
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • 10.1111/1467-9868.00293 0979.62046 1841503
    • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B 63(2):411-423
    • (2001) J R Stat Soc ser B , vol.63 , Issue.2 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 39
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • 10.1162/089976699300016728 10.1162/089976699300016728
    • Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analyzers. Neural Comput 11(2):443-482. doi: 10.1162/ 089976699300016728
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 40
    • 85032760331 scopus 로고    scopus 로고
    • Subspace clustering
    • 10.1109/MSP.2010.939739 10.1109/MSP.2010.939739
    • Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28:52-68. doi: 10.1109/MSP.2010.939739
    • (2011) IEEE Signal Process Mag , vol.28 , pp. 52-68
    • Vidal, R.1
  • 41
    • 65749083666 scopus 로고    scopus 로고
    • 1 ℓ 1 -constrained quadratic programming (lasso)
    • doi: 10.1109/TIT.2009.2016018
    • 1 ℓ 1 -constrained quadratic programming (lasso). IEEE Trans Inf Theory 55(5):2183-2202. doi: 10.1109/TIT.2009.2016018
    • (2009) IEEE Trans Inf Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 44
    • 77954603019 scopus 로고    scopus 로고
    • A framework for feature selection in clustering
    • doi: 10.1198/jasa.2010.tm09415
    • Witten D, Tibshirani R (2010) A framework for feature selection in clustering. J Am Stat Assoc 105:713-726. doi: 10.1198/jasa.2010.tm09415. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2930825&tool= pmcentrez&rendertype=abstract
    • (2010) J Am Stat Assoc , vol.105 , pp. 713-726
    • Witten, D.1    Tibshirani, R.2
  • 45
    • 0030125082 scopus 로고    scopus 로고
    • Asymptotic convergence analysis of the projection approximation subspace tracking algorithms
    • 10.1016/0165-1684(96)00008-4 0875.94068
    • Yang B (1996) Asymptotic convergence analysis of the projection approximation subspace tracking algorithms. Signal Process 50:123-136
    • (1996) Signal Process , vol.50 , pp. 123-136
    • Yang, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.