메뉴 건너뛰기




Volumn 3, Issue 3, 2011, Pages 165-218

Templates for convex cone problems with applications to sparse signal recovery

Author keywords

Conic duality; Nesterov's accelerated descent algorithms; Nuclear norm minimization; Optimal first order methods; Proximal algorithms; Smoothing by conjugation; The Dantzig selector; The LASSO

Indexed keywords

CONES; NUMERICAL ANALYSIS; REGRESSION ANALYSIS;

EID: 84856004485     PISSN: 18672949     EISSN: 18672957     Source Type: Journal    
DOI: 10.1007/s12532-011-0029-5     Document Type: Article
Times cited : (523)

References (69)
  • 1
    • 77955783919 scopus 로고    scopus 로고
    • An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
    • doi:10.1109/TIP.2010.2076294
    • Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 19(11), (2010). doi:10.1109/TIP.2010.2076294
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.11
    • Afonso, M.V.1    Bioucas-Dias, J.M.2    Figueiredo, M.A.T.3
  • 2
    • 33747151859 scopus 로고    scopus 로고
    • Interior gradient and proximal methods for convex and conic optimization
    • Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16(3), 697-725 (2006)
    • (2006) SIAM J. Optim. , vol.16 , Issue.3 , pp. 697-725
    • Auslender, A.1    Teboulle, M.2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009)
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 5
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1-39 (2011)
    • (2011) SIAM J. Imaging Sci. , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.J.3
  • 6
    • 84870449147 scopus 로고    scopus 로고
    • Templates for first-order conic solvers user guide
    • Preprint
    • Becker, S., Candès, E.J., Grant, M.: Templates for first-order conic solvers user guide. Technical report (2010). Preprint. http://tfocs.stanford.edu
    • (2010) Technical report
    • Becker, S.1    Candès, E.J.2    Grant, M.3
  • 7
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • doi:10.1137/080714488
    • van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890 (2009). doi:10.1137/080714488. http://link.aip.org/link/SJOCE3/v31/i2/ p890/s1&Agg=doi
    • (2009) SIAM J. Sci. Comput. , vol.31 , Issue.2 , pp. 890
    • van den Berg, E.1    Friedlander, M.P.2
  • 10
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956-1982 (2010)
    • (2010) SIAM J. Optim. , vol.20 , pp. 1956-1982
    • Cai, J.F.1    Candès, E.J.2    Shen, Z.3
  • 12
    • 0036836408 scopus 로고    scopus 로고
    • New multiscale transforms, minimum total-variation synthesis: Applications to edge-preserving image reconstruction
    • Candès, E.J., Guo, F.: New multiscale transforms, minimum total-variation synthesis: applications to edge-preserving image reconstruction. Signal Process. 82(11), 1519-1543 (2002)
    • (2002) Signal Process. , vol.82 , Issue.11 , pp. 1519-1543
    • Candès, E.J.1    Guo, F.2
  • 14
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717-772 (2009)
    • (2009) Found. Comput. Math. , vol.9 , Issue.6 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 17
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313-2351 (2007)
    • (2007) Ann. Stat. , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 18
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053-2080 (2010)
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candès, E.J.1    Tao, T.2
  • 19
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted 1 minimization
    • Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5-6), 877-905 (2008)
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 877-905
    • Candès, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 20
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145 (2010)
    • (2010) J. Math. Imaging Vis. , vol.40 , Issue.1 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 23
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery
    • Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Process. 1(4), 564-574 (2007)
    • (2007) IEEE J. Sel. Topics Signal Process. , vol.1 , Issue.4 , pp. 564-574
    • Combettes, P.L.1    Pesquet, J.C.2
  • 24
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168-1200 (2005)
    • (2005) SIAM Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 25
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of 1 minimization problems when the solution may be sparse
    • Donoho, D.L., Tsaig, Y.: Fast solution of 1 minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789-4812 (2008)
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 27
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Problems 23, 947-968 (2007)
    • (2007) Inverse Problems , vol.23 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 28
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo, M.A.T., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586-597 (2007)
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.2    Wright, S.J.3
  • 29
    • 56749091502 scopus 로고    scopus 로고
    • Exact regularization of convex programs
    • doi:10.1137/060675320
    • Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326-1350 (2007). doi:10.1137/060675320. http://link.aip.org/link/?SJE/18/1326/1
    • (2007) SIAM J. Optim. , vol.18 , Issue.4 , pp. 1326-1350
    • Friedlander, M.P.1    Tseng, P.2
  • 30
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1-22 (2010)
    • (2010) J. Stat. Softw. , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 31
    • 0019602085 scopus 로고
    • Ageneralized proximal point algorithm for certain non-convex minimization problems
    • Fukushima, M., Mine, H.:Ageneralized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12(8), 989-1000 (1981)
    • (1981) Int. J. Syst. Sci. , vol.12 , Issue.8 , pp. 989-1000
    • Fukushima, M.1    Mine, H.2
  • 34
    • 0005914572 scopus 로고    scopus 로고
    • PARNES: A rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals
    • Preprint
    • Gu, M., Lim, L.H., Wu, C.J.: PARNES: a rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals. Technical report (2009). Preprint http://arxiv.org/abs/0911.0492
    • (2009) Technical report
    • Gu, M.1    Lim, L.H.2    Wu, C.J.3
  • 35
    • 0007016022 scopus 로고
    • New proximal point algorithms for convex minimization
    • doi:10.1137/0802032
    • Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649-664 (1992). doi:10.1137/0802032. http://link.aip.org/link/?SJE/2/649/1
    • (1992) SIAM J. Optim. , vol.2 , Issue.4 , pp. 649-664
    • Güler, O.1
  • 36
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: Methodology and convergence
    • 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107-1130 (2008)
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 38
    • 58149345975 scopus 로고    scopus 로고
    • DASSO: Connections Between the Dantzig Selector and Lasso
    • James, G., Radchenko, P., Lv, J.: DASSO: Connections Between the Dantzig Selector and Lasso. J. R. Stat. Soc. B 71, 127-142 (2009)
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 127-142
    • James, G.1    Radchenko, P.2    Lv, J.3
  • 40
    • 78651417720 scopus 로고    scopus 로고
    • Primal-dual first-order methods with o(1/ε) iteration-complexity for cone programming
    • doi:10.1007/s10107-008-0261-6
    • Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with o(1/ε) iteration-complexity for cone programming. Math. Program. (2009). doi:10.1007/s10107-008-0261-6. http://www. springerlink.com/index/10.1007/s10107-008-0261-6
    • (2009) Math. Program
    • Lan, G.1    Lu, Z.2    Monteiro, R.D.C.3
  • 42
    • 84862272060 scopus 로고    scopus 로고
    • An implementable proximal point algorithmic framework for nuclear norm minimization
    • doi:10.1007/s10107-010-0437-8
    • Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. (2011). doi:10.1007/s10107-010-0437-8
    • (2011) Math. Program.
    • Liu, Y.J.1    Sun, D.2    Toh, K.C.3
  • 43
    • 84870471905 scopus 로고    scopus 로고
    • Constructing test instances for basis pursuit denoising
    • arXiv:1103.2897
    • Lorenz, D.: Constructing test instances for basis pursuit denoising. Technical report. arXiv:1103.2897 (2011)
    • (2011) Technical report
    • Lorenz, D.1
  • 44
    • 84870422423 scopus 로고    scopus 로고
    • Primal-dual first-order methods for a class of cone programming
    • Preprint
    • Lu, Z.: Primal-dual first-order methods for a class of cone programming. INFORMS J. Comput. Preprint http://www.math.sfu.ca/~zhaosong/ResearchPapers/pdfirst_DS_2ndrev.pdf (2009)
    • (2009) INFORMS J. Comput
    • Lu, Z.1
  • 45
    • 63049122761 scopus 로고    scopus 로고
    • A predual proximal point algorithm solving a non negative basis pursuit denoising model
    • Malgouyres, F., Zeng, T.: A predual proximal point algorithm solving a non negative basis pursuit denoising model. Int. J. Comput. Vis. 83(3), 294-311 (2009)
    • (2009) Int. J. Comput. Vis. , vol.83 , Issue.3 , pp. 294-311
    • Malgouyres, F.1    Zeng, T.2
  • 47
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273-299 (1965)
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.J.1
  • 50
    • 17444382102 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)
    • Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady AN USSR (translated as Soviet Math. Docl.) 269, 543-547 (1983)
    • (1983) Doklady AN USSR (translated as Soviet Math. Docl.) , vol.269 , pp. 543-547
    • Nesterov, Y.1
  • 51
    • 0010831555 scopus 로고
    • On an approach to the construction of optimal methods of minimization of smooth convex functions
    • in Russian
    • Nesterov, Y.: On an approach to the construction of optimal methods of minimization of smooth convex functions. Ekonomika i Mateaticheskie Metody 24, 509-517 (1988, in Russian)
    • (1988) Ekonomika i Mateaticheskie Metody , vol.24 , pp. 509-517
    • Nesterov, Y.1
  • 52
    • 77953098740 scopus 로고    scopus 로고
    • Introductory Lectures on Convex Optimization: A Basic Course
    • Kluwer, Boston
    • Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization, vol. 87. Kluwer, Boston (2004)
    • (2004) Applied Optimization , vol.87
    • Nesterov, Y.1
  • 53
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127-152 (2005)
    • (2005) Math. Program. Ser. A , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 54
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Université Catholique de Louvain, Louvain-la-Neuve, Belgium
    • Nesterov, Y.: Gradient methods for minimizing composite objective function. Technical report, CORE 2007/76, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2007)
    • (2007) Technical report, CORE 2007/76
    • Nesterov, Y.1
  • 55
    • 77349126814 scopus 로고    scopus 로고
    • Fast linearized Bregman iteration for compressive sensing and sparse denoising
    • Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93-111 (2010)
    • (2010) Commun. Math. Sci. , vol.8 , Issue.1 , pp. 93-111
    • Osher, S.1    Mao, Y.2    Dong, B.3    Yin, W.4
  • 56
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton
    • Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 57
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
    • (1976) SIAM J. Control Optim. , vol.14 , pp. 877-898
    • Rockafellar, R.T.1
  • 59
    • 44049111982 scopus 로고
    • Nonlinear total variation noise removal algorithm
    • Rudin, L.I., Osher, S., Fatemi, E.:Nonlinear total variation noise removal algorithm. PhysicaD60, 259-268 (1992)
    • (1992) PhysicaD , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 60
    • 33750312675 scopus 로고    scopus 로고
    • PDCO: Primal-dual interior method for convex objectives
    • Stanford University
    • Saunders, M., Kim, B.: PDCO: Primal-dual interior method for convex objectives. Technical report, Stanford University. http://www.stanford.edu/group/SOL/software/pdco.html (2002)
    • (2002) Technical report
    • Saunders, M.1    Kim, B.2
  • 61
    • 0043265073 scopus 로고    scopus 로고
    • Wavelets and curvelets for image deconvolution: A combined approach
    • Starck, J.L., Ngyuen, M.K., Murtagh, F.:Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83, 2279-2283 (2003)
    • (2003) Signal Process. , vol.83 , pp. 2279-2283
    • Starck, J.L.1    Ngyuen, M.K.2    Murtagh, F.3
  • 62
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J.R. Stat. Soc. B58(1), 267-288 (1996)
    • (1996) J.R. Stat. Soc. , vol.B58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 64
    • 67651044298 scopus 로고    scopus 로고
    • Efficient schemes for total variation minimization under constraints in image processing
    • Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047-2080 (2009)
    • (2009) SIAM J. Sci. Comput. , vol.31 , pp. 2047-2080
    • Weiss, P.1    Blanc-Féraud, L.2    Aubert, G.3
  • 65
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
    • Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832-1857 (2010)
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 68
    • 78651547900 scopus 로고    scopus 로고
    • Analysis and generalizations of the linearized Bregman method
    • Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3(4), 856-877 (2010). http://dx.doi.org/10.1137/090760350
    • (2010) SIAM J. Imaging Sci. , vol.3 , Issue.4 , pp. 856-877
    • Yin, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.