메뉴 건너뛰기




Volumn 9, Issue 5, 2009, Pages 517-558

Foundations of a multi-way spectral clustering framework for Hybrid Linear Modeling

Author keywords

Concentration inequalities; D flats clustering; Hybrid linear modeling; Multi way clustering; Perturbation analysis; Polar curvature; Spectral clustering

Indexed keywords

CONCENTRATION INEQUALITY; D-FLATS CLUSTERING; LINEAR MODELING; MULTI-WAY CLUSTERING; PERTURBATION ANALYSIS; POLAR CURVATURE; SPECTRAL CLUSTERING;

EID: 70349452039     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-009-9043-7     Document Type: Article
Times cited : (60)

References (43)
  • 1
    • 34250754984 scopus 로고    scopus 로고
    • S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in Proceedings of the 23rd International Conference on Machine learning, vol. 148 (2006), pp. 17-24
    • S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in Proceedings of the 23rd International Conference on Machine learning, vol. 148 (2006), pp. 17-24.
  • 2
    • 24644523726 scopus 로고    scopus 로고
    • S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, S. Belongie, Beyond pairwise clustering, in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 2 (2005), pp. 838-845
    • S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, S. Belongie, Beyond pairwise clustering, in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 2 (2005), pp. 838-845.
  • 3
    • 23744478860 scopus 로고    scopus 로고
    • E. Arias-Castro, D. Donoho, X. Huo, Near-optimal detection of geometric objects by fast multiscale methods, IEEE Trans. Inf. Theory51(7) (2005)
    • E. Arias-Castro, D. Donoho, X. Huo, Near-optimal detection of geometric objects by fast multiscale methods, IEEE Trans. Inf. Theory51(7) (2005).
  • 4
    • 33845525246 scopus 로고    scopus 로고
    • Algorithm 862: MATLAB tensor classes for fast algorithm prototyping
    • http://www.citeulike.org/user/bamberg/article/2875626
    • B. Bader, T. Kolda, Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw.32(4), 635-653 (2006). http://www.citeulike.org/user/bamberg/article/2875626
    • (2006) ACM Trans. Math. Softw. , vol.32 , Issue.4 , pp. 635-653
    • Bader, B.1    Kolda, T.2
  • 6
    • 84876609550 scopus 로고    scopus 로고
    • M. Brand, K. Huang, A unifying theorem for spectral embedding and clustering, in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, January 2003.
    • M. Brand, K. Huang, A unifying theorem for spectral embedding and clustering, in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, January 2003.
  • 7
    • 58149494138 scopus 로고    scopus 로고
    • Spectral curvature clustering (SCC)
    • G. Chen, G. Lerman, Spectral curvature clustering (SCC), Int. J. Comput. Vis.81(3), 317-330 (2009).
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.3 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 8
    • 0032154138 scopus 로고    scopus 로고
    • A multibody factorization method for independently moving objects
    • J. Costeira, T. Kanade, A multibody factorization method for independently moving objects, Int. J. Comput. Vis.29(3), 159-179 (1998).
    • (1998) Int. J. Comput. Vis. , vol.29 , Issue.3 , pp. 159-179
    • Costeira, J.1    Kanade, T.2
  • 9
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. Fischler, R. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM24(6), 381-395 (1981).
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 11
    • 33745140904 scopus 로고    scopus 로고
    • V. Govindu, A tensor decomposition for geometric grouping and segmentation, in CVPR, vol. 1, June 2005, pp. 1150-1157
    • V. Govindu, A tensor decomposition for geometric grouping and segmentation, in CVPR, vol. 1, June 2005, pp. 1150-1157.
  • 12
    • 84876618377 scopus 로고    scopus 로고
    • P. Gruber, F. Theis, Grassmann clustering, in Proc. EUSIPCO 2006, Florence, Italy, 2006
    • P. Gruber, F. Theis, Grassmann clustering, in Proc. EUSIPCO 2006, Florence, Italy, 2006.
  • 13
    • 52449104800 scopus 로고    scopus 로고
    • Translated Poisson mixture model for stratification learning
    • G. Haro, G. Randall, G. Sapiro, Translated Poisson mixture model for stratification learning, Int. J. Comput. Vis.80(3), 358-374 (2008).
    • (2008) Int. J. Comput. Vis. , vol.80 , Issue.3 , pp. 358-374
    • Haro, G.1    Randall, G.2    Sapiro, G.3
  • 14
    • 0042440805 scopus 로고    scopus 로고
    • J. Ho, M. Yang, J. Lim, K. Lee, D. Kriegman, Clustering appearances of objects under varying illumination conditions, in Proceedings of International Conference on Computer Vision and Pattern Recognition, vol. 1 (2003), pp. 11-18
    • J. Ho, M. Yang, J. Lim, K. Lee, D. Kriegman, Clustering appearances of objects under varying illumination conditions, in Proceedings of International Conference on Computer Vision and Pattern Recognition, vol. 1 (2003), pp. 11-18.
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Netw.13(4-5), 411-430 (2000).
    • (2000) Neural Netw. , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 16
    • 84876642647 scopus 로고    scopus 로고
    • A. Kambhatla, T. Leen, Fast non-linear dimension reduction, in Advances in Neural Information Processing Systems 6, (1994), pp. 152-159
    • A. Kambhatla, T. Leen, Fast non-linear dimension reduction, in Advances in Neural Information Processing Systems 6, (1994), pp. 152-159.
  • 17
    • 0034843849 scopus 로고    scopus 로고
    • K. Kanatani, Motion segmentation by subspace separation and model selection, in Proc. of 8th ICCV, vol. 3, Vancouver, Canada (2001), pp. 586-591
    • K. Kanatani, Motion segmentation by subspace separation and model selection, in Proc. of 8th ICCV, vol. 3, Vancouver, Canada (2001), pp. 586-591.
  • 18
    • 84876632943 scopus 로고    scopus 로고
    • K. Kanatani, Evaluation and selection of models for motion segmentation, in 7th ECCV, vol. 3, May 2002, pp. 335-349
    • K. Kanatani, Evaluation and selection of models for motion segmentation, in 7th ECCV, vol. 3, May 2002, pp. 335-349.
  • 19
    • 33745422982 scopus 로고    scopus 로고
    • Fast multiscale clustering and manifold identification
    • D. Kushnir, M. Galun, A. Brandt, Fast multiscale clustering and manifold identification, Pattern Recognit.39(10), 1876-1891 (2006).
    • (2006) Pattern Recognit. , vol.39 , Issue.10 , pp. 1876-1891
    • Kushnir, D.1    Galun, M.2    Brandt, A.3
  • 21
    • 58549092594 scopus 로고    scopus 로고
    • On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions
    • http://portal.acm.org/citation.scfm?id=1498013
    • G. Lerman, J.T. Whitehouse, On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. J. Approx. Theory56(1), 52-81 (2009). http://portal.acm.org/citation.scfm?id=1498013.
    • (2009) J. Approx. Theory , vol.56 , Issue.1 , pp. 52-81
    • Lerman, G.1    Whitehouse, J.T.2
  • 22
    • 84876631812 scopus 로고    scopus 로고
    • G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures-part I: Geometric multipoles and multiscale inequalities (2008, submitted). Available from
    • G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures-part I: Geometric multipoles and multiscale inequalities (2008, submitted). Available from http://arxiv.org/abs/0805.1425v1.
  • 23
    • 70449527779 scopus 로고    scopus 로고
    • G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures-part II: d-separation and a menagerie of curvatures. Constr. Approx. (2009, accepted). Available from
    • G. Lerman, J.T. Whitehouse, High-dimensional Menger-type curvatures-part II: d-separation and a menagerie of curvatures. Constr. Approx. (2009, accepted). Available from http://arxiv.org/abs/0809.0137v1.
  • 24
    • 84876613411 scopus 로고    scopus 로고
    • G. Lerman, J.T. Whitehouse, Least squares for probability measures via multi-way curvatures (2009, in preparation)
    • G. Lerman, J.T. Whitehouse, Least squares for probability measures via multi-way curvatures (2009, in preparation).
  • 25
    • 34548133659 scopus 로고    scopus 로고
    • Segmentation of multivariate mixed data via lossy coding and compression
    • Y. Ma, H. Derksen, W. Hong, J. Wright, Segmentation of multivariate mixed data via lossy coding and compression, IEEE Trans. Pattern Anal. Mach. Intell.29(9), 1546-1562 (2007).
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.9 , pp. 1546-1562
    • Ma, Y.1    Derksen, H.2    Hong, W.3    Wright, J.4
  • 26
    • 50949096624 scopus 로고    scopus 로고
    • Estimation of subspace arrangements with applications in modeling and segmenting mixed data
    • Y. Ma, A.Y. Yang, H. Derksen, R. Fossum, Estimation of subspace arrangements with applications in modeling and segmenting mixed data, SIAM Rev.50(3), 413-458 (2008).
    • (2008) SIAM Rev. , vol.50 , Issue.3 , pp. 413-458
    • Ma, Y.1    Yang, A.Y.2    Derksen, H.3    Fossum, R.4
  • 27
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley: University of California Press
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (University of California Press, Berkeley, 1967), pp. 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 28
    • 51949103923 scopus 로고    scopus 로고
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proc. CVPR, Alaska, June 2008
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for local image analysis, in Proc. CVPR, Alaska, June 2008.
  • 29
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge: Cambridge University Press
    • C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics (Cambridge University Press, Cambridge, 1989), pp. 148-188.
    • (1989) Surveys in Combinatorics , pp. 148-188
    • McDiarmid, C.1
  • 31
    • 84876619417 scopus 로고    scopus 로고
    • A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems 14, (2001), pp. 849-856
    • A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems 14, (2001), pp. 849-856.
  • 32
    • 33745844738 scopus 로고    scopus 로고
    • A. Shashua, R. Zass, T. Hazan, Multi-way clustering using super-symmetric non-negative tensor factorization, in ECCV06, vol. IV (2006), pp. 595-608
    • A. Shashua, R. Zass, T. Hazan, Multi-way clustering using super-symmetric non-negative tensor factorization, in ECCV06, vol. IV (2006), pp. 595-608.
  • 34
    • 33745937349 scopus 로고    scopus 로고
    • R. Souvenir, R. Pless, Manifold clustering, in The 10th International Conference on Computer Vision (ICCV 2005), 2005
    • R. Souvenir, R. Pless, Manifold clustering, in The 10th International Conference on Computer Vision (ICCV 2005), 2005.
  • 35
    • 84876650243 scopus 로고    scopus 로고
    • A. Szlam, Modifications of kq-flats for supervised learning (2008)
    • A. Szlam, Modifications of kq-flats for supervised learning (2008).
  • 36
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • M. Tipping, C. Bishop, Mixtures of probabilistic principal component analysers, Neural Comput.11(2), 443-482 (1999).
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 37
    • 3242741982 scopus 로고    scopus 로고
    • Geometric motion segmentation and model selection
    • P.H.S. Torr, Geometric motion segmentation and model selection, Philos. Trans. R. Soc. Lond. A356, 1321-1340 (1998).
    • (1998) Philos. Trans. R. Soc. Lond. A , vol.356 , pp. 1321-1340
    • Torr, P.H.S.1
  • 38
    • 0034349278 scopus 로고    scopus 로고
    • Nearest q-flat to m points
    • P. Tseng, Nearest q-flat to m points, J. Optim. Theory Appl.105(1), 249-252 (2000).
    • (2000) J. Optim. Theory Appl. , vol.105 , Issue.1 , pp. 249-252
    • Tseng, P.1
  • 39
    • 30144438432 scopus 로고    scopus 로고
    • R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (GPCA), IEEE Trans. Pattern Anal. Mach. Intell.27(12) (2005)
    • R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (GPCA), IEEE Trans. Pattern Anal. Mach. Intell.27(12) (2005).
  • 40
    • 51049104834 scopus 로고    scopus 로고
    • Consistency of spectral clustering
    • U. von Luxburg, M. Belkin, O. Bousquet, Consistency of spectral clustering, Ann. Stat.36(2), 555-586 (2008).
    • (2008) Ann. Stat. , vol.36 , Issue.2 , pp. 555-586
    • von Luxburg, U.1    Belkin, M.2    Bousquet, O.3
  • 41
    • 84876600059 scopus 로고    scopus 로고
    • J. Yan, M. Pollefeys, A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate, in ECCV, vol. 4 (2006), pp. 94-106
    • J. Yan, M. Pollefeys, A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate, in ECCV, vol. 4 (2006), pp. 94-106.
  • 42
    • 33845527507 scopus 로고    scopus 로고
    • A.Y. Yang, S.R. Rao, Y. Ma, Robust statistical estimation and segmentation of multiple subspaces, in Computer Vision and Pattern Recognition Workshop, June 2006
    • A.Y. Yang, S.R. Rao, Y. Ma, Robust statistical estimation and segmentation of multiple subspaces, in Computer Vision and Pattern Recognition Workshop, June 2006.
  • 43
    • 84864041215 scopus 로고    scopus 로고
    • L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel principal components analysis, in Advances in Neural Information Processing Systems 18 (2005), pp. 1649-1656
    • L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel principal components analysis, in Advances in Neural Information Processing Systems 18 (2005), pp. 1649-1656.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.