메뉴 건너뛰기




Volumn 19, Issue 10, 2012, Pages 704-707

Nearness to local subspace algorithm for subspace and motion segmentation

Author keywords

Similarity matrix; Spectral clustering; Subspace segmentation; Unions of subspaces

Indexed keywords

DATA CLUSTERING; DATA POINTS; DATA SETS; DIMENSIONAL SUBSPACE; HIGH DIMENSIONAL DATA; HOPKINS; MOTION SEGMENTATION; SIMILARITY MATRIX; SPECTRAL CLUSTERING; SUB-SPACE ALGORITHMS; SUB-SPACE SEGMENTATION; UNIONS OF SUBSPACES; VIDEO SEQUENCES;

EID: 84867786804     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2012.2214211     Document Type: Article
Times cited : (18)

References (21)
  • 1
    • 44849115269 scopus 로고    scopus 로고
    • A theory for sampling signals from a union of subspaces
    • DOI 10.1109/TSP.2007.914346
    • Y. M. Lu and M. N. Do, "A theory for sampling signals from a union of subspaces," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2334-2345, 2008. (Pubitemid 351795887)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2334-2345
    • Lu, Y.M.1    Do, M.N.2
  • 2
    • 79955691131 scopus 로고    scopus 로고
    • Multi-stage optimization for multi-body motion segmentation
    • K. Kanatani and Y. Sugaya, "Multi-stage optimization for multi-body motion segmentation," IEICE Trans. Inf. Syst, pp. 335-349, 2003.
    • (2003) IEICE Trans. Inf. Syst , pp. 335-349
    • Kanatani, K.1    Sugaya, Y.2
  • 3
    • 67650918132 scopus 로고    scopus 로고
    • Nonlinear least squares in
    • A.Aldroubi and K. Zaringhalam, "Nonlinear least squares in, " Acta Appl. Math., vol. 107, no. 1-3, pp. 325-337, 2009.
    • (2009) Acta Appl. Math. , vol.107 , Issue.1-3 , pp. 325-337
    • Aldroubi, A.1    Zaringhalam, K.2
  • 5
    • 0037328517 scopus 로고    scopus 로고
    • Lambertian reflectance and linear subspaces
    • R. Basri and D. W. Jacobs, "Lambertian reflectance and linear subspaces," IEEE Trans. Pattern Anal.Mach. Intell., vol. 25, pp. 218-233, 2003, 2.
    • (2003) IEEE Trans. Pattern Anal.Mach. Intell. , vol.25 , Issue.2 , pp. 218-233
    • Basri, R.1    Jacobs, D.W.2
  • 7
    • 79955688807 scopus 로고    scopus 로고
    • On the existence of optimal unions of subspaces for data modeling and clustering
    • p. arXiv:1008.4811v1, to appear
    • A. Aldroubi and R. Tessera, "On the existence of optimal unions of subspaces for data modeling and clustering," Found. Comput. Math., 2011, p. arXiv:1008.4811v1, to appear.
    • (2011) Found. Comput. Math.
    • Aldroubi, A.1    Tessera, R.2
  • 9
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, andY.Yu, "Robust subspace segmentation by low-rank representation," in Int. Conf. Machine Learning, 2010, pp. 663-670.
    • (2010) Int. Conf. Machine Learning , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 13
    • 0034349278 scopus 로고    scopus 로고
    • Nearest q-flat to m points
    • P. Tseng, "Nearest q-flat to m points," J. Optim. Theory Applicat., vol. 105, no. 1, pp. 249-252, 2000.
    • (2000) J. Optim. Theory Applicat. , vol.105 , Issue.1 , pp. 249-252
    • Tseng, P.1
  • 14
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • DOI 10.1145/358669.358692
    • M. Fischler and R. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, vol. 24, no. 6, pp. 381-395, 1981, 6. (Pubitemid 12444102)
    • (1981) Communications of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler Martin, A.1    Bolles Robert, C.2
  • 16
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. V. Luxburg, "A tutorial on spectral clustering," Statist. Comput., vol. 17, pp. 395-416, 2007.
    • (2007) Statist. Comput. , vol.17 , pp. 395-416
    • Luxburg, U.V.1
  • 17
    • 58149494138 scopus 로고    scopus 로고
    • Spectral curvature clustering (SCC)
    • G. Chen and G. Lerman, "Spectral curvature clustering (SCC)," Int. J. Comput. Vis., vol. 81, pp. 317-330, 2009.
    • (2009) Int. J. Comput. Vis. , vol.81 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 18
    • 33745812742 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate
    • J. Yan and M. Pollefeys, "A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate," in 9th Eur. Conf. Computer Vision, 2006, pp. 94-106.
    • (2006) 9th Eur. Conf. Computer Vision
    • Yan, J.1    Pollefeys, M.2
  • 20
    • 0034843849 scopus 로고    scopus 로고
    • Motion segmentation by subspace separation and model selection
    • 7
    • K. Kanatani, "Motion segmentation by subspace separation and model selection," in 8th Int. Conf. Computer Vision, 2001, vol. 2, pp. 301-306, 7.
    • (2001) 8th Int. Conf. Computer Vision , vol.2 , pp. 301-306
    • Kanatani, K.1
  • 21
    • 77958006812 scopus 로고    scopus 로고
    • Enhanced local subspace affinity for feature-based motion segmentation
    • L. Zappella, X. Llad'o, E. Provenzi, and J. Salvi, "Enhanced local subspace affinity for feature-based motion segmentation," Pattern Recognit., vol. 44, pp. 454-470, 2011.
    • (2011) Pattern Recognit. , vol.44 , pp. 454-470
    • Zappella, L.1    Llad'O, X.2    Provenzi, E.3    Salvi, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.